首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 15 毫秒
1.
2.
This experimental study comparatively examined the two-phase flow structures, pressured drops and heat transfer performances for the cocurrent air–water slug flows in the vertical tubes with and without the spiky twisted tape insert. The two-phase flow structures in the plain and swirl tubes were imaged using the computerized high frame-rate videography with the Taylor bubble velocity measured. Superficial liquid Reynolds number (ReL) and air-to-water mass flow ratio (AW), which were respectively in the ranges of 4000–10000 and 0.003–0.02 were selected as the controlling parameters to specify the flow condition and derive the heat transfer correlations. Tube-wise averaged void fraction and Taylor bubble velocity were well correlated by the modified drift flux models for both plain and swirl tubes at the slug flow condition. A set of selected data obtained from the plain and swirl tubes was comparatively examined to highlight the impacts of the spiky twisted tape on the air–water interfacial structure and the pressure drop and heat transfer performances. Empirical heat transfer correlations that permitted the evaluation of individual and interdependent ReL and AW impacts on heat transfer in the developed flow regions of the plain and swirl tubes at the slug flow condition were derived.  相似文献   

3.
A methodology for improved robustness in the simulation of high void fraction free surface polydisperse bubbly flows in curvilinear overset grids is presented. The method is fully two‐way coupled in the sense that the bubbly field affects the continuous fluid and vice versa. A hybrid projection approach is used in which staggered contravariant velocities at cell faces are computed for transport and pressure–velocity coupling while the momentum equation is solved on a collocated grid arrangement. Conservation of mass is formulated such that a strong coupling between void fraction, pressure, and velocity is achieved within a partitioned approach, solving each field separately. A pressure–velocity projection solver is iterated together with a predictor stage for the void fraction to achieve a robust coupling. The implementation is described for general curvilinear grids detailing particulars in the neighborhood to overset interfaces or a free surface. A balanced forced method to avoid the generation of spurious currents is extended for curvilinear grids. The overall methodology allows simulation of high void fraction flows and is stable even when strong packing forces accounting for bubble collisions are included. Convergence and stability in one‐dimensional (1D) and two‐dimensional (2D) configurations is evaluated. Finally, a full‐scale simulation of the bubbly flow around a flat‐bottom boat is performed demonstrating the applicability of the methodology to complex problems of engineering interest. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
The air and water flow distribution are experimentally studied for a round header – flat tube geometry simulating a parallel flow heat exchanger. The number of branch flat tube is 30. The effects of tube outlet direction, tube protrusion depth as well as mass flux, and quality are investigated. The flow at the header inlet is identified as annular. For the downward flow configuration, the water flow distribution is significantly affected by the tube protrusion depth. For flush-mounted configuration, most of the water flows through frontal part of the header. As the protrusion depth increases, more water is forced to the rear part of the header. The effect of mass flux or quality is qualitatively the same as that of the protrusion depth. Increase of the mass flux or quality forces the water to rear part of the header. For the upward flow configuration, however, most of the water flows through rear part of the header. The protrusion depth, mass flux, or quality does not significantly alter the flow pattern. Possible explanations are provided based on the flow visualization results. Negligible difference on the water flow distribution was observed between the parallel and the reverse flow configuration.  相似文献   

5.
Heat transfer coefficients were measured and new correlations were developed for two-phase, two-component (air and water) heat transfer in a horizontal pipe for different flow patterns. Flow patterns were observed in a transparent circular pipe using an air–water mixture. Visual identification of the flow patterns was supplemented with photographic data, and the results were plotted on the flow regime map proposed by Taitel and Dukler and agreed quite well with each other. A two-phase heat transfer experimental setup was built for this study and a total of 150 two-phase heat transfer data with different flow patterns were obtained under a uniform wall heat flux boundary condition. For these data, the superficial Reynolds number ranged from 640 to 35,500 for the liquid and from 540 to 21,200 for the gas. Our previously developed robust two-phase heat transfer correlation for a vertical pipe with modified constants predicted the horizontal pipe air–water heat transfer experimental data with very good accuracy. Overall the proposed correlations predicted the data with a mean deviation of 1.0% and an rms deviation of 12%.  相似文献   

6.
A flow-pattern-dependent model, traditionally used for calculation of pressure drop and water hold-up, is accustomed for calculation of the liquid production rates in oil–water horizontal flow, based on the known pressure drop and water hold-up. The area-averaged steady-state one-dimensional two-fluid model is used for stratified flow, while the homogeneous model is employed for dispersed flow. The prediction errors appear to be larger when the production rates are calculated instead of pressure drop and water hold-up. The difference in the calculation accuracies between the direct and inverse calculation is most probably caused by the different uncertainties in the measured values of the input variables and a high sensitivity of the calculated phase flow-rates on even small change of the water hold-up for certain flow regimes. In order to locate the source of error in the standard two-fluid model formulation, several parametric studies are performed. In the first parametric study, we investigate under which conditions the momentum equations are satisfied when the measured pressure drop and water hold-up are imposed. The second and third parametric studies address the influence of the interfacial waves and drop entrainment on the model accuracy, respectively. These studies show that both interfacial waves and drop entrainment can be responsible for the augmentation of the wall-shear stress in oil–water flow. In addition, consideration of the interfacial waves offers an explanation for some important phenomena of the oil–water flow, such as the wall-shear stress reduction.  相似文献   

7.
An analysis of the discrete shallow‐water equations using the Raviart–Thomas and Brezzi–Douglas–Marini finite elements is presented. For inertia–gravity waves, the discrete formulations are obtained and the dispersion relations are computed in order to quantify the dispersive nature of the schemes on two meshes made up of equilateral and biased triangles. A linear algebra approach is also used to ascertain the possible presence of spurious modes arising from the discretization. The geostrophic balance is examined and the smallest representable vortices are characterized on both structured and unstructured meshes. Numerical solutions of two test problems to simulate gravity and Rossby modes are in good agreement with the analytical results. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

8.
This paper presents a general strategy for designing adaptive space–time finite element discretizations of the nonstationary Navier–Stokes equations. The underlying framework is that of the dual weighted residual method for goal‐oriented a posteriori error estimation and automatic mesh adaptation. In this approach, the error in the approximation of certain quantities of physical interest, such as the drag coefficient, is estimated in terms of local residuals of the computed solution multiplied by sensitivity factors, which are obtained by numerically solving an associated dual problem. In the resulting local error indicators, the effects of spatial and temporal discretization are separated, which allows for the simultaneous adjustment of time step and spatial mesh size. The efficiency of the proposed method for the construction of economical meshes and the quantitative assessment of the error is illustrated by several test examples. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
This paper is concerned with the analysis of the Helmholtz–Hodge decomposition theorem since it plays a fundamental role in the projection methods that are adopted in the numerical solution of the Navier–Stokes equations for incompressible flows. The paper highlights the role of the orthogonal decomposition of a vector field in a bounded domain when general boundary conditions are in effect. In fact, even if Fractional Time‐Step Methods are standard procedures for de‐coupling the pressure gradient and the velocity field, many problems are encountered in performing the decoupling with higher accuracy. Since the problem of determining a unique and orthogonal decomposition requires only one boundary condition to be well posed, thus either the normal or the tangential ones, result exactly imposed at the end of the projection. Numerical errors are introduced in terms of both the pressure and the velocity but the orthogonality of decomposition guarantees that the former does not contribute to affect the accuracy of the latter. Moreover, it is shown that depending on the meaning of the vector to be decomposed, i.e. acceleration or velocity, the true orthogonal projector can be defined only when suitable boundary conditions are verified. Conversely, it is shown that when the decomposition results non‐orthogonal, the velocity accuracy suffers of other errors. The issue on the resulting accuracy order of the procedure is clearly addressed by means of several accuracy studies and a strategy for improving it is proposed. This paper follows and integrates the issues reported in Iannelli and Denaro (Int. J. Numer. Meth. Fluids 2003; 42 : 399–437). Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

10.
A simple error analysis is used within the context of segregated finite element solution scheme to solve incompressible fluid flow. An error indicator is defined based on the difference between a numerical solution on an original mesh and an approximated solution on a related mesh. This error indicator is based on satisfying the steady‐state momentum equations. The advantages of this error indicator are, simplicity of implementation (post‐processing step), ability to show regions of high and/or low error, and as the indicator approaches zero the solution approaches convergence. Two examples are chosen for solution; first, the lid‐driven cavity problem, followed by the solution of flow over a backward facing step. The solutions are compared to previously published data for validation purposes. It is shown that this rather simple error estimate, when used as a re‐meshing guide, can be very effective in obtaining accurate numerical solutions. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

11.
This work presents an approximate Riemann solver to the transient isothermal drift ‐ flux model. The set of equations constitutes a non‐linear hyperbolic system of conservation laws in one space dimension. The elements of the Jacobian matrix A are expressed through exact analytical expressions. It is also proposed a simplified form of A considering the square of the gas to liquid sound velocity ratio much lower than one. This approximation aims to express the eigenvalues through simpler algebraic expressions. A numerical method based on the Gudunov's fluxes is proposed employing an upwind and a high order scheme. The Roe linearization is applied to the simplified form of A . The proposed solver is validated against three benchmark solutions and two experimental pipe flow data. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
In the lattice Boltzmann method (LBM), the mechanism of fluid–solid interaction can be effectively captured by appropriately enforcing the no‐slip conditions in shear direction, and bounce‐back of the non‐equilibrium distribution portion in the normal direction at fluid–solid interfaces. Among various solid–fluid interaction schemes being proposed for LBM in recent decades, two simple fluid–solid interaction methods—the momentum exchange algorithm (MEA) and the immersed boundary scheme (IBS)—were developed based on the above concept. In this paper, MEA and IBS are implemented in a D2Q9 LBGK system and applied to measure the wall correction factors of drag force upon a stationary circular particle midway in the Poiseuille channel flow at very low Reynolds number and drag coefficients at low to moderate Reynolds numbers. MEA and IBS are also employed to compare the fluid‐induced torque over the cylinder in the Taylor–Couette flow, and the steady velocity of a particle settling under the influence of gravity inside a tube. The above experiments show that IBS seems to be more accurate and less demanding on lattice resolution. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
14.
A comparison of multigrid methods for solving the incompressible Navier–Stokes equations in three dimensions is presented. The continuous equations are discretised on staggered grids using a second‐order monotonic scheme for the convective terms and implemented in defect correction form. The convergence characteristics of a decoupled method (SIMPLE) are compared with those of the cellwise coupled method (SCGS). The convergence rates obtained for computations of the three‐dimensional lid‐driven cavity problem are found to be very similar to those obtained for computations of the corresponding two‐dimensional problem with comparable grid density. Although the convergence rate of SCGS is thus superior to that of SIMPLE, the decoupled method is found to be more efficient computationally and requires less computing time for a given level of convergence. The linewise implementation of the coupled method (CLGS) is also investigated and shown to be more efficient than SCGS, although the convergence rate and computing time required per cycle are both found to depend on the direction of sweep. The optimal implementation of CLGS is found to be only marginally more effective than SIMPLE, but a change to the structure of the data storage would increase the advantage. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

15.
The central aim of this paper is the development and application of an efficient, iterative methodology for the computation of the perturbation fields induced by harmonic forcing of the linearised Navier–Stokes equations. The problem is formulated directly in the frequency domain, and the resulting system of equations is solved iteratively until convergence. The method is easily implemented to any implicit code that can solve iteratively the steady‐state Navier–Stokes equations. In this paper, it is applied to investigate the flow around a static cylinder with pulsating approaching flow and a cylinder undergoing forced stream‐wise oscillations. All terms of the perturbation kinetic energy equation are computed, and it is shown that perturbations grow by extracting energy from two sources: the underlying base flow field and the externally provided energy that maintains the imposed oscillation. The periodic drag force acting on the cylinder is also computed, and it is demonstrated that Morrison's equation is a simple model that can estimate with good accuracy the amplitude and phase of this force with respect to the approaching flow. The perturbation fields induced by periodic inlet flow (static cylinder) and forced stream‐wise cylinder oscillation are closely related: the velocity fields are identical in the appropriate reference frames, and a simple expression is derived, which links the pressures in the two flow cases. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

16.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号