首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Two 2D J-modulated HSQC-based experiments were designed for precise determination of small residual dipolar one-bond carbon–proton coupling constants in 13C natural abundance carbohydrates. Crucial to the precision of a few hundredths of Hz achieved by these methods was the use of long modulation intervals and BIRD pulses, which acted as semiselective inversion pulses. The BIRD pulses eliminated effective evolution of all but 1JCH couplings, resulting in signal modulation that can be described by simple modulation functions. A thorough analysis of such modulation functions for a typical four-spin carbohydrate spin system was performed for both experiments. The results showed that the evolution of the 1H–1H and long-range 1H–13C couplings during the BIRD pulses did not necessitate the introduction of more complicated modulation functions. The effects of pulse imperfections were also inspected. While weakly coupled spin systems can be analyzed by simple fitting of cross peak intensities, in strongly coupled spin systems the evolution of the density matrix needs to be considered in order to analyse data accurately. However, if strong coupling effects are modest the errors in coupling constants determined by the “weak coupling” analysis are of similar magnitudes in oriented and isotropic samples and are partially cancelled during dipolar coupling calculation. Simple criteria have been established as to when the strong coupling treatment needs to be invoked.  相似文献   

2.
We present two new sensitivity enhanced gradient NMR experiments for measuring interference effects between chemical shift anisotropy (CSA) and dipolar coupling interactions in a scalar coupled two-spin system in both the laboratory and rotating frames. We apply these methods for quantitative measurement of longitudinal and transverse cross-correlation rates involving interference of 13C CSA and 13C–1H dipolar coupling in a disaccharide, α,α- -trehalose, at natural abundance of 13C as well as interference of amide 15N CSA and 15N–1H dipolar coupling in uniformly 15N-labeled ubiquitin. We demonstrate that the standard heteronuclear T1, T2, and steady-state NOE autocorrelation experiments augmented by cross-correlation measurements provide sufficient experimental data to quantitatively separate the structural and dynamic contributions to these relaxation rates when the simplifying assumptions of isotropic overall tumbling and an axially symmetric chemical shift tensor are valid.  相似文献   

3.
Three-dimensional image-selected in vivo spectroscopy (ISIS) was combined with phase-cycled 1H–15N heteronuclear multiple-quantum coherence (HMQC) transfer NMR for localized selective observation of protons J-coupled to 15N in phantoms and in vivo. The ISIS–HMQC sequence, supplemented by jump–return water suppression, permitted localized selective observation of 2–5 μmol of [15Nindole]tryptophan, a precursor of the neurotransmitter serotonin, through the 15N-coupled proton in 20–40 min of acquisition in vitro at 4.7 T. In vivo, the amide proton of [5-15N]glutamine was selectively observed in the brain of spontaneously breathing 15NH4+-infused rats, using a volume probe with homogeneous 1H and 15N fields. Signal recovery after three-dimensional localization was 72–82% in phantoms and 59 ± 4% in vivo. The result demonstrates that localized selective observation of 15N-coupled protons, with complete cancellation of all other protons except water, can be achieved in spontaneously breathing animals by the ISIS–HMQC sequence. This sequence performs both volume selection and heteronuclear editing through an addition/subtraction scheme and predicts the highest intrinsic sensitivity for detection of 15N-coupled protons in the selected volume. The advantages and limitations of this method for in vivo application are compared to those of other localized editing techniques currently in use for non-exchanging protons.  相似文献   

4.
A new two-dimensional pulse sequence for T2* measurement of protons directly coupled to 13C spins is proposed. The sequence measures the tranverse relaxation time of heteronuclear proton single-quantum coherence under conditions of free precession and is therefore well suited to evaluate relaxation losses of proton magnetization during preparation delays of heteronuclear pulse experiments in analytical NMR. The relevant part of the pulse sequence can be inserted as a “building block” into any direct or inverse detecting H,C correlation pulse sequence if proton spin–spin relaxation is to be investigated. In this contribution, the building block is inserted into a HETCOR as well as into a HMQC pulse sequence. Experimental results for the HETCOR-based sequence are given.  相似文献   

5.
Spin relaxation is a sensitive probe of molecular structure and dynamics. Correlation of relaxation time constants, such as T1 and T2, conceptually similar to the conventional multidimensional spectroscopy, have been difficult to determine primarily due to the absense of an efficient multidimensional Laplace inversion program. We demonstrate the use of a novel computer algorithm for fast two-dimensional inverse Laplace transformation to obtain T1T2 correlation functions. The algorithm efficiently performs a least-squares fit on two-dimensional data with a nonnegativity constraint. We use a regularization method to find a balance between the residual fitting errors and the known noise amplitude, thus producing a result that is found to be stable in the presence of noise. This algorithm can be extended to include functional forms other than exponential kernels. We demonstrate the performance of the algorithm at different signal-to-noise ratios and with different T1T2 spectral characteristics using several brine-saturated rock samples.  相似文献   

6.
In experiments on SL heteronuclear spin systems with evolution of the S-spin magnetization under the influence of a quadrupolar nucleus (L-spin), effects of longitudinal quadrupolar (T1Q) relaxation of the L-spin coherence on the sub-millisecond time scale have been documented and explored, and methods for minimizing their effect have been demonstrated. The longitudinal relaxation results in heteronuclear dephasing even in the reference signal S0 of S{L} REDOR, REAPDOR, RIDER, or SPIDER experiments, due to T1Q-relaxation of the transiently generated SyLz coherence, reducing or even eliminating the observable dephasing ΔS. Pulse sequences for measuring an improved reference signal S00 with minimal heteronuclear recoupling but the same number of pulses as for S0 and S have been demonstrated. From the observed intensity ΔS0 = S00 − S0 and the SPIDER signal ΔS/S0, T1Q can be estimated. Accelerated decays analogous to the dipolar S0 curves will occur in T2 measurements for J-coupled SL spin pairs. Even in the absence of recoupling pulses, fast T1Q relaxation of the unobserved nucleus shortens the transverse relaxation time T2S,MAS of the observed nucleus, in particular at low spinning frequencies, due to unavoidable heteronuclear dipolar evolution during a rotation period. The observed spinning-frequency dependence of T2S,MAS matches the theoretical prediction and may be used to estimate T1Q. The effects are demonstrated on several 13C{14N} spin systems, including an arginine derivative, the natural N-acetylated polysaccharide chitin, and a model peptide, (POG)10.  相似文献   

7.
The reactivity of the (0 0 0 1)-Cr–Cr2O3 surface towards water was studied by means of periodic DFT + U. Several water coverages were studied, from 1.2H2O/nm2 to 14.1H2O/nm2, corresponding to ¼, 1, 2 and 3 water/Cr at the (0 0 0 1)-Cr2O3 surface, respectively. With increasing coverage, water gradually completes the coordination sphere of the surface Cr atoms from 3 (dry surface) to 4 (1.2 and 4.7H2O/nm2), 5 (9.4H2O/nm2) and 6 (14.1H2O/nm2). For all studied coverages, water replaces an O atom from the missing above plane. At coverages 1.2 and 4.7H2O/nm2, the Cr–Os (surface oxygen) acid–base character and bond directionality govern the water adsorption. The adsorption is molecular at the lowest coverage. At 4.7H2O/nm2, molecular and dissociative states are isoenergetic. The activation energy barrier between the two states being as low as 12 kJ/mol, allowing protons exchanges between the OH groups, as evidenced by ab inito molecular dynamics at room temperature. At coverages of 9.4 and 14.1H2O/nm2, 1D- (respectively, 2D-) water networks are formed. The resulting surface terminations are –Cr(OH)2 and –Cr(OH)3– like, respectively. The increased stability of those terminations as compared to the previous ones are due to the stabilization of the adsorbed phase through a H-bond network and to the increase in the Cr coordination number, stabilizing the Cr (t2g) orbitals in the valence band. An atomistic thermodynamic approach allows us to specify the temperature and water pressure domains of prevalence for each surface termination. It is found that the –Cr(OH)3-like, –Cr(OH)2 and anhydrous surfaces may be stabilized depending on (TP) conditions. Calculated energies of adsorption and OH frequencies are in good agreement with published experimental data and support the full hydroxylation model, where the Cr achieves a 6-fold coordination, at saturation.  相似文献   

8.
The structure of polyacrylamide gels was studied using proton spin–lattice relaxation and PFG diffusion methods. Polyacrylamide gels, with total polymer concentrations ranging from 0.25 to 0.35 g/ml and crosslinker concentrations from 0 to 10% by weight, were studied. The data showed no effect of the crosslinker concentration on the diffusion of water molecules. The Ogston–Morris and Mackie–Meares models fit the general trends observed for water diffusion in gels. The diffusion coefficients from the volume averaging method also fit the data, and this theory was able to account for the effects of water-gel interactions that are not accounted for in the other two theories. The averaging theory also did not require the physically unrealistic assumption, required in the other two theories, that the acrylamide fibers are of similar size to water molecules. Contrary to the diffusion data,T1relaxation measurements showed a significant effect of crosslinker concentration on the relaxation of water in gels. The model developed using the Bloch equations and the volume averaging method described the effects of water adsorption on the gel medium on both the diffusion coefficients and the relaxation measurements. In the proposed model the gel medium was assumed to consist of three phases (i.e., bulk water, uncrosslinked acrylamide fibers, and a bisacrylamide crosslinker phase). The effects of the crosslinker concentration were accounted for by introducing the proton partition coefficient,Keq, between the bulk water and crosslinker phase. The derived relaxation equations were successful in fitting the experimental data. The partition coefficient,Keq, decreased significantly as the crosslinker concentration increased from 5 to 10% by weight. This trend is consistent with the idea that bisacrylamide tends to form hydrophobic regions with increasing crosslinker concentration.  相似文献   

9.
A two-dimensional {31P} spin-echo-difference constant-time [13C, 1H]-HMQC experiment (2D {31P}-sedct-[13C, 1H]-HMQC) is introduced for measurements of 3JC4′P and 3JH3′P scalar couplings in large 13C-labeled nucleic acids and in DNA–protein complexes. This experiment makes use of the fact that 1H–13C multiple-quantum coherences in macromolecules relax more slowly than the corresponding 13C single-quantum coherences. 3JC4′P and 3JH3′P are related via Karplus-type functions with the phosphodiester torsion angles β and ε, respectively, and their experimental assessment therefore contributes to further improved quality of NMR solution structures. Data are presented for a uniformly 13C, 15N-labeled 14-base-pair DNA duplex, both free in solution and in a 17-kDa protein–DNA complex.  相似文献   

10.
Thin films of amorphous Se100−xSbx (x=5,10 and 20 at%) system are deposited on a silicon substrate at room temperature (300 K) by thermal evaporation technique. The optical constant such as refractive index (n) has been determined by a method based on the envelope curves of the optical transmission spectrum at normal incidence by a Swanpoel method. The oscillator energy (Eo), dispersion energy (Ed) and other parameters have been determined by the Wemple–DiDomenico method. The absorption coefficient (α) has been determined from the reflectivity and transmitivity spectrum in the range 300–2500 nm. The optical-absorption data indicate that the absorption mechanism is a non-direct transition. We found that the optical band gap, Egopt, decreases from 1.66±0.01 to 1.35±0.01 eV with increase Sb content.  相似文献   

11.
Coherence transfer from quadrupolar27Al (I= ) nuclei to31P (I= ) via INEPT experiments is investigated.27Al →31P INEPT experiments on a (CH3)3P–AlCl3complex in zeolite NaX are performed, and the results demonstrate that the31P INEPT signals strongly depend on whether or not the27Al pulses are applied synchronously with the rotor period, and on the length of the27Al pulses. A density-matrix calculation involving the use of the spin operators for spin and nuclei has been performed to help understand the evolution behavior of the density matrix under the influence of the quadrupolar interaction, the dipolar andJ-couplings, and the pulse lengths applied to the quadrupolar nuclei. The theoretical predictions obtained from these calculations are consistent with the INEPT experimental observations.  相似文献   

12.
Using Fourier-transform spectra (Bruker IFS 120 HR, resolution ≈0.004 cm−1) of NH3 in nine branches of the ν2, 2ν2 and ν4 bands, self-broadening and self-shift as well as self-mixing coefficients have been determined at room temperature (T=295 K) for more than 350 rovibrational lines located in the spectral range 1000–1800 cm−1. A non-linear least-squares multispectrum fitting procedure, including line mixing effects, has been used to retrieve successively the line parameters from 11 experimental spectra recorded at different pressures of pure NH3. The accuracies of self-broadening coefficients are estimated to be better than 2% for most lines. The mean accuracies of line-mixing and line-shift data are estimated to be about 15% and 25%, respectively. The results are compared with previous measurements and with values calculated using a semiclassical model based upon the Robert–Bonamy formalism that reproduces rather well the systematic experimental J and K quantum number dependencies of the self-broadening coefficients.The results concerning line mixing demonstrate a large amount of coupling between the symmetric and asymmetric components of inversion doublets mainly in the ν4 band. The line mixing parameters are both positive and negative. More than two thirds of the lines studied here have a positive shift coefficient. However, for most of them the shift coefficients are negative in the 2ν2 band. They are positive for the R branch of the ν2 band and for the PR and RP branches of the ν4 band. For the other branches they are both positive and negative. Some components of inversion doublets illustrate a correlation between line mixing and shift phenomena demonstrated by a quadratic pressure dependence of line position.  相似文献   

13.
The conductivity and elastic modulus of (CeO2)1 − x(YO1.5)x for x values of 0.10, 0.15, 0.20, 0.30, and 0.40 were investigated by experiments and molecular dynamics simulations. The calculated conductivity exhibited a maximum value at approximately 15 mol% Y2O3; this trend agreed with that of the experimental results. In order to clarify the reason for the occurrence of the maximum conductivity, the paths for the transfer of oxygen vacancies were counted. The numerical result revealed that as the content of Y2O3 dopant increases, the number of paths for the transfer of oxygen vacancies decreases, whereas the number of oxygen vacancies for conductivity increases. Thus, the trade-off between the increase in the number of vacancy sites and the decrease in the vacancy transfer was considered to be the reason for the maximum conductivity occurring at the Y2O3 dopant content of approximately 15 mol%. The calculated elastic modulus also exhibited a minimum value at approximately 20 mol% Y2O3, which also agreed with the experimental results. It was shown that the Y–O–Y bonding energy increased with the increasing content of Y2O3 dopant. Thus, the trade-off between the increase in the number of vacancy sites and that in the Y–O–Y bonding energy was considered to be the reason for the minimum elastic modulus occurring at the Y2O3 dopant content of approximately 20 mol%.  相似文献   

14.
We present the high resolution absorption measurements of gaseous HONO at room temperature using continuous-wave cavity ring-down spectroscopy in the near-infrared region between 6017 and 6067 cm−1 at a resolution of 1 pm (0.037 cm−1). For the trans-HONO isomer an extensive analysis of the ν1+2ν3 combination band 6045.8089 cm–1 was performed starting from the results of a previous study for the 11 and 31 vibrational states [Guilmot J-M, Godefroid M, Herman M. Rovibrational parameters for trans-nitrous acid. J Mol Spectrosc 1993;160:387–400]. The present combination band is perturbed because of the existence of several dark states of HONO which could not be identified unambiguously. The rotational constants achieved for the 1132 state deviate slightly from the values which are predicted from the rotational constants achieved in the previous studies for the 11 and 31 vibrational states of trans-HONO.  相似文献   

15.
Optical transmittance measurements near the absorption edge of [Kx(NH4)1−x]2ZnCl4 mixed crystals, where x=0.00, 0.232, 0.522, 0.644, 0.859 and 1.00, are reported over 276–350 K range. Analysis reveals that the type of transition is the indirect allowed one. The absorption edge shifted towards lower energy with increasing temperature. It is shown that [Kx(NH4)1−x]2ZnCl4 mixed crystals with x0.644 reveal a phase transition at 319 K, this phase disappeared at high concentrations of K+ ions. The steepness parameter is given, its value is used to estimate the temperature dependence of the indirect energy gap. In the region of the absorption edge, the absorption coefficient obeys Urbach's rule. Urbach parameters are investigated as a function of temperature.  相似文献   

16.
Residual dipolar couplings (RDCs) between NC′ and NCα atoms in polypeptide backbones of proteins contain information on the orientation of bond vectors that is complementary to that contained in NH RDCs. The 1JNCα and 2JNCα scalar couplings between these atoms also display a Karplus relation with the backbone torsion angles and report on secondary structure. However, these N–C couplings tend to be small and they are frequently unresolvable in frequency domain spectra having the broad lines characteristic of large proteins. Here a TROSY-based J-modulated approach for the measurement of small 15N–13C couplings in large proteins is described. The cross-correlation interference effects inherent in TROSY methods improve resolution and signal to noise ratios for large proteins, and the use of J-modulation to encode couplings eliminates the need to remove frequency distortions from overlapping peaks during data analysis. The utility of the method is demonstrated by measurement of 1JNC′, 1JNCα, and 2JNCα scalar couplings and 1DNC′ and 1DNCα residual dipolar couplings for the myristoylated yeast ARF1·GTPγs protein bound to small lipid bicelles, a system with an effective molecule weight of 70 kDa.  相似文献   

17.
We compare 29Si magic-angle spinning (MAS) nuclear magnetic resonance (NMR) spectra from the two modifications of silicon nitride, α-Si3N4 and β-Si3N4, with that of a fully (29Si, 15N)-enriched sample 29Si315N4, as well as 15N NMR spectra of Si315N4 (having 29Si at natural abundance) and 29Si315N4. We show that the 15N NMR peak-widths from the latter are dominated by J(29Si–15N) through-bond interactions, leading to significantly broader NMR signals compared to those of Si315N4. By fitting calculated 29Si NMR spectra to experimental ones, we obtained an estimated coupling constant J(29Si–15N) of 20 Hz. We provide 29Si spin-lattice (T1) relaxation data for the 29Si315N4 sample and chemical shift anisotropy results for the 29Si site of β-Si3N4. Various factors potentially contributing to the 29Si and 15N NMR peak-widths of the various silicon nitride specimens are discussed. We also provide powder X-ray diffraction (XRD) and mass spectrometry data of the samples.  相似文献   

18.
Recent developments in the direct observation of J couplings across hydrogen bonds in proteins and nucleic acids provide additional information for structure and function studies of these molecules by NMR spectroscopy. A JNN-correlated [15N, 1H] TROSY experiment proposed by Pervushin et al. (Proc. Natl. Acad. Sci. USA 95, 14147–14151, 1998) can be applied to measure hJHN in smaller nucleic acids in an E.COSY manner. However, it cannot be effectively applied to large nucleic acids, such as tRNATrp, since one of the peaks corresponding to a fast relaxing component will be too weak to be observed in the spectra of large molecules. In this Communication, we proposed a modified JNN-correlated [15N, 1H] TROSY experiment which enables direct measurement of hJHN in large nucleic acids.  相似文献   

19.
The role of charge carriers in ZnO2/CuO2 planes of Cu0.5Tl0.5Ba2Ca3Cu4−yZnyO12−δ material in bringing about superconductivity has been explained. Due to suppression of anti-ferromagnetic order with Zn 3d10 (S=0) substitution at Cu 3d9 sites in the inner CuO2 planes of Cu0.5Tl0.5Ba2Ca3Cu4O12−δ superconductor, the distribution of charge carriers becomes homogeneous and optimum, which is evident from the enhanced superconductivity parameters. The decreased c-axis length with the increase of Zn doping improves interlayer coupling and hence the three dimensional (3D) conductivity in the unit cell is enhanced. Also the softening of phonon modes with the increased Zn doping indicates that the electron–phonon interaction has an essential role in the mechanism of high-Tc superconductivity in these compounds.  相似文献   

20.
Effects of a combined substitute of Yb and Nd on Y site on the superconducting properties of YBa2Cu3Oy have been studied. We synthesized Y1−x(Yb0.9Nd0.1)xBa2Cu3Oz compound with x = 0.2, 0.4, 0.6, 0.8 and 1.0. Here, the ratio of Yb–Nd was fixed to be 9:1 for obtaining 123 phase without secondary phases. The melt processing thermal profiles for Y1−x(Yb0.9Nd0.1)xBa2Cu3Oz with x = 0.2 and 0.4 and the addition of 40 mol% {Y1−x(Yb0.9Nd0.1)x}2BaCuO5 and 0.5 wt% Pt in air were determined on the basis of the thermal analysis results. All samples showed a low grain growth rate, particularly for high x values, which may be partially ascribed to un-optimized thermal schedules. Although almost all the samples exhibited low Jc values, the sample with x = 0.2 exhibited Tc of 88.8 K and a relatively high Jc value of 16,000 A/cm2 at 77 K for H//c-axis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号