首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Intervertebral disc (IVD) degeneration is a complex process characterized by biochemical and structural changes in both the nucleus pulposus and the anulus fibrosus. In this study, we were able to obtain in vivo magnetic resonance (MR) images of the rabbit spine, with several MR imaging (MRI) contrasts (ρ, T1 and T2). We quantified several parameters (T2, apparent diffusion coefficient, disc height and area) to differentiate between healthy and degenerative IVDs and to characterize the degeneration process. To our knowledge, there has not been any previous in vivo study of rabbit IVDs at high-field MRI (9.4 T).A custom radio frequency (RF) coil for 9.4 T was designed to match rabbit IVD morphology, to study the degeneration in vivo on a model of human lumbar disease. Our new probe, a custom half-birdcage-type coil, obtains the necessary exploration depth while meeting the requirements for signal homogeneity and sensitivity of the study. This design addresses some of the difficulties with constructing RF coils at high field strengths.  相似文献   

2.
ObjectivesThe aim of this study was to use DKI to detect the microstructural change of the discs in matured normal rats.MethodsTotal 24 normal SD rats (12 males/12 females) underwent DWI/DKI and T2 sequences with a 3T MRI scanner to get the values of ADC, FA, MD, Da, Dr, MK, Ka and Kr. The discs were categorized using a five-grade degeneration grading system in the T2-images. The height of the discs and the parameters in DWI/DKI were measured to compare between the different grades and sexes. The histological images and the images of fiber tracking were also done in the discs.ResultsThere were 30 Grade 1 and 18 Grade 2 in the discs. Compared with Grade 1, decreased ADC, increased FA and MK values were observed in Grade 2 (P < 0.05). By the ROC analysis of grades of the discs, there was low diagnostic accuracy in ADC value, while FA and MK showed higher accuracy. In Grade 1, there were lower ADC value, lower Dr, higher MK, Ka and Kr in male's group than them in female's group. There were no differences in the parameters except the ADC value in the two sexes in Grade 2. The different microstructure of the normal discs in the male and female rats had been proved by the histological images and the images of fiber tracking.ConclusionDKI is a noninvasive and sustainable means to test the changes of intervertebral discs. The discs in Grade 2 were also found in the normal matured SD rat tails. The assessment of the grade of the discs in T2-images should be done before the experimental management. There was microstructural difference in the nucleus pulposus in the discs in Grade 1 and 2. FA and MK showed higher diagnostic accuracy. The laboratory rats should be the same sex because the microstructure of the normal discs weren't the same.  相似文献   

3.
Significant artifacts arise in T(1rho)-weighted imaging when nutation angles suffer small deviations from their expected values. These artifacts vary with spin-locking time and amplitude, severely limiting attempts to perform quantitative imaging or measurement of T(1rho) relaxation times. A theoretical model explaining the origin of these artifacts is presented in the context of a T(1rho)-prepared fast spin-echo imaging sequence. Experimentally obtained artifacts are compared to those predicted by theory and related to B(1) inhomogeneity. Finally, a "self-compensating" spin-locking preparatory pulse cluster is presented, in which the second half of the spin-locking pulse is phase-shifted by 180 degrees. Use of this pulse sequence maintains relatively uniform signal intensity despite large variations in flip angle, greatly reducing artifacts in T(1rho)-weighted imaging.  相似文献   

4.
The purpose of this study was to demonstrate T1rho dispersion in different rat tissues (liver, brain, spleen, kidney, heart, and skeletal muscle), and to compare the 1/T1rho data to previous 1/T1 data and magnetization transfer of rat tissues at low (0.1 T) B0 field. The 1/T1rho dispersion showed a fairly similar pattern in all tissues. The highest 1/T1rho relaxation rates were seen in liver and muscle followed by heart, whereas the values for spleen, kidney, and brain were quite similar. Compared to 1/T2 relaxation rate, the greatest difference was seen in liver and muscle. The rank order 1/T1rho value at each locking field B1 was the same as the transfer rate of magnetization from the water to the macromolecular pool (Rwm) for liver, muscle, heart, and brain. The potential value T1rho imaging is to combine high T1 contrast of low field imaging with the high signal to noise ratio of high static field imaging. When the T1rho value for a given tissue is known, the contrast between different tissues can be optimized by adjusting the locking time TL. Further studies are encouraged to fully exploit this. Targets for more detailed research include brain infarct, brain and liver tumors.  相似文献   

5.

Purpose

To assess the feasibility and to optimize imaging parameters of diffusion kurtosis imaging (DKI) in human kidneys.

Methods

The kidneys of ten healthy volunteers were examined on a clinical 3 T MR scanner. For DKI, respiratory triggered EPI sequences were acquired in the coronal plane (3 b-values: 0, 300, 600 s/mm2, 30 diffusion directions). A goodness of fit analysis was performed and the influence of the signal-to-noise ratio (SNR) on the DKI results was evaluated. Region-of-interest (ROI) measurements were performed to determine apparent diffusion coefficient (ADC), fractional anisotropy (FA) and mean kurtosis (MK) of the cortex and the medulla of the kidneys. Intra-observer and inter-observer reproducibility using Bland-Altman plots as well as subjective image quality of DKI were examined and ADC, FA, and MK parameters were compared.

Results

The DKI model fitted better to the experimental data (r = 0.99) with p < 0.05 than the common mono-exponential ADC model (r = 0.96).Calculation of reliable kurtosis parameters in human kidneys requires a minimum SNR of 8.31 on b = 0 s/mm2 images.Corticomedullary differentiation was possible on FA and MK maps. ADC, FA and MK revealed significant differences in medulla (ADC = 2.82 × 10− 3 mm2/s ± 0.25, FA = 0.42 ± 0. 05, MK = 0.78 ± 0.07) and cortex (ADC = 3.60 × 10− 3 mm2/s ± 0.28, FA = 0.18 ± 0.04, MK = 0.94 ± 0.07) with p < 0.001.

Conclusion

Our initial results indicate the feasibility of DKI in the human kidney presuming an adequate SNR. Future studies in patients with kidney diseases are required to determine the value of DKI for functional kidney imaging.  相似文献   

6.
This paper describes and tests the LL-EPI method for obtaining quantitative T1 estimates in a few seconds thereby allowing dynamic T1 studies. It is shown that the method works even when there is an inflow into the imaged volume, e.g., in a vessel. No calibration is needed. The method has been tested in a phantom study with several different scan parameter set-ups, with and without inflow. The method shows robustness and individual scan parameters and inflow rates do not influence the ability to calculate the Gd-DTPA concentration. Linearity prevail between the measured 1/T1 and the Gd-DTPA concentration in the range 150 < T1 < 2500 ms. In a dynamic Gd-DTPA phantom study, it was shown that the dynamic LL-EPI T1 mapping technique was three times more sensitive than the signal from a T*2-weighted EPI sequence. In an in vivo study, dynamic T1 mapping of the Gd-DTPA uptake in a meningioma was performed. Inspection of the uptake curves indicates that the method is feasible in clinical perfusion studies.  相似文献   

7.
Nuclear magnetic resonance (NMR) proton density images of the human brain have been made by the FONAR method. Spin-lattice relaxation times, T1, of water hydrogen protons have been determined at random positions within frontal and temporal regions of the human brain. The primary purpose of this ongoing research is to accumulate a large data base of normal T1 values for water protons in normal human brain tissue. Our experience to data includes 31 measurements on 18 volunteer subjects, and the mean value ± standard deviation is 215 ± 42 msec. In addition, two metastatic lesions of the brain were studied and found to have T1 values longer than those for normal brain tissue.  相似文献   

8.
A probe using a solenoid coil tilted 45 degrees off-axis has been used to study the 31P NMR relaxation characteristics of the resonances arising from phosphorus metabolites in rats in vivo. T1, T1 rho and T2 values have been determined for phosphocreatine and ATP in leg muscle. The ratio of 31P T1(1700ms) to T2(12ms) for ATP was in excess of 200:1 compared with a ratio of 5:1 for 1H T1:T2. Of major significance was the observation that T2 values for phosphocreatine (230ms) were markedly longer than T2 values for ATP (12ms). Thus by use of appropriate delay times in spin echo sequences ATP signals can be nulled, and discrete 31P imaging of phosphocreatine in muscle may be possible provided the overall signal-to-noise is satisfactory.  相似文献   

9.
Low back pain (LBP) is a costly and widely prevalent health disorder in the U.S. One of the most common causes of LBP is degenerative disc disease (DDD). There are many imaging techniques to characterize disc degeneration; however, there is no way to directly assess the material properties of the intervertebral disc (IVD) within the intact spine. Magnetic resonance elastography (MRE) is an MRI-based technique for non-invasively mapping the mechanical properties of tissues in vivo. The purpose of this study was to investigate the feasibility of using MRE to detect shear wave propagation in and determine the shear stiffness of an axial cross-section of an ex vivo baboon IVD, and compare with shear displacements from a finite element model of an IVD motion segment in response to harmonic shear vibration. MRE was performed on two baboon lumbar spine motion segments (L3–L4) with the posterior elements removed at a range of frequencies (1000–1500 Hz) using a standard clinical 1.5 T MR scanner. Propagating waves were visualized in an axial cross-section of the baboon IVDs in all three motion-encoding directions, which resembled wave patterns predicted using finite element modeling. The baboon nucleus pulposus showed an average shear stiffness of 79 ± 15 kPa at 1000 Hz. These results suggest that MRE is capable of visualizing shear wave propagation in the IVD, assessing the stiffness of the nucleus of the IVD, and can differentiate the nucleus and annulus regions.  相似文献   

10.
Measurements of the variations of spin-locking relaxation rates (R) with locking field amplitude allow the derivation of quantitative parameters that describe different dynamic processes, such as slow molecular motions, chemical exchange and diffusion. In some samples, changes in R values between locking frequency 0 and 200 Hz may be dominated mainly by diffusion of water in intrinsic field gradients, while those at higher locking fields are due to exchange processes. The exchange and diffusion effects act independently of each other, as confirmed by simulation and experimentally. In tissues, the relevant intrinsic field gradients may arise from the magnetic inhomogeneities caused by microvascular blood so that R dispersion over weak locking field amplitudes (≤ 200 Hz) is affected by changes in capillary density and geometry. Here we first review the theoretical and experimental background to the interpretation of R dispersions caused by intrinsic magnetic susceptibility variations within the tissue. We then provide new empirical results of R dispersion imaging of the human brain and skeletal muscle at low locking field amplitudes for the first time and identify potential applications of R dispersion imaging in clinical studies.  相似文献   

11.
Solid-state spin–lattice relaxation in the rotating frame permits the investigation of dynamic processes with correlation times in the range of microseconds. The relaxation process in organic solids is driven by the fluctuation of the local magnetic field due to the dipole–dipole interaction of the probe nuclei (13C,15N) with 1H in close proximity. However, its effect is often hidden by a competing relaxation process due to the contact between the rotating frame 13C/15N Zeeman and 1H dipolar reservoirs. In most cases the latter process becomes superior for the commonly applied low and moderate spin-lock fields and practically does not provide information about the molecular dynamics. To suppress this undesired process and to expand the dynamic range of T1 ρ experiments, we present two approaches. The first one uses a resonance offset of the frequency of the spin-lock irradiation, which leads to a significant enhancement of the effective spin-lock frequency without the application of destructive high transmitter powers. We derive the theory and demonstrate the applicability of the method on various model compounds. The second approach utilizes heteronuclear 1H decoupling during the 13C/15N spin-lock irradiation which disrupts the contact between the 13C/15N Zeeman and 1H dipolar reservoirs. We demonstrate the method and discuss the results qualitatively.  相似文献   

12.
In NMR imaging rho, T1 and T2 images are usually calculated from a set of partial saturation, saturation recovery or inversion recovery experiments with multiple echoes and multiple repetition times. Several methods can be envisaged to extract parameter images from such a set of source images. These methods to a greater or lesser extent take advantage of the fact that a multiple echo/multiple repetition time experiment provides a set of largely independent T1 and T2 measurements. In this study several data analysis methods, including weighted and non-weighted averaging of results of independent T1 and T2 measurements, weighted and non-weighted averaging of source images prior to data reduction and simultaneous three-parameter fitting, were compared against another in terms of precision, computational efficiency and robustness. The predicted performance of the examined methods was verified by stochastic simulation experiments.  相似文献   

13.
The increased blood oxygenation level-dependent contrast available at high field makes the implementation of combined EEG/fMRI experiments at 7 T highly worthwhile from the point of view of fMRI data quality, but the higher field poses greater technical challenges for achieving good quality EEG data. A study of the feasibility of recording EEG signals from human subjects at 7 T using a commercially available, MR-compatible EEG system has therefore been carried out. This involved systematic measurement of the sources of noise in EEG recordings made in the 7 T scanner and measurement of RF heating effects on a gel phantom in the presence of a 32-electrode EEG cap. Having found no significant safety concerns and identified a set-up (involving switching off the magnet's cryo-cooler pumps and mounting the EEG amplifier on a cantilever) that limited scanner-induced noise, combined EEG/fMRI experiments employing visual stimulation were then successfully carried out on two human subjects. With the use of beamformer-based analysis of the EEG data, driven responses and alpha-band, event-related desynchronisation were identified in both subjects.  相似文献   

14.
Multiple point T1 and T2 values of 424 vertebral bodies were measured and analysed. The influence of several factors including age, sex, location in the spine and status of neighbouring discs on the measured relaxation times were evaluated. The results indicate limitations in the region of interest approach. Vertebral bodies of different age, sex and location in the spine could not be distinguished. For heterogeneous tissues a more advanced form of image analysis appears to be essential. Diurnal factors resulting from the stress of normal ambulatory activity caused increased variation in vertebral body relaxation time values.  相似文献   

15.
The purpose of this study was to show the T(1rho) dispersion profile in various rat tissues (liver, brain, spleen, kidney, heart and skeletal muscle) at low (0.1 T) B(0) field at very low locking field B1, starting from 10 microT. The T(1rho) dispersion profile showed a quite similar pattern in all tissues. The highest R(1rho) relaxation rates were seen in the liver and muscle followed by the heart, whereas the values for spleen, kidney and brain were rather similar. The greatest difference between R2 relaxation rate and R(1rho) relaxation rate at B1=10 microT was seen in the liver and muscle. The steepest slope for a dispersion curve was seen in the muscle. The value of T(1rho) approximately approached the value of T2 when the locking field B1 approached 0. Except for the liver, the calculated apparent relaxation rate R2' was slightly larger than the calculated one. The potential value of T(1rho) imaging is to combine high R1 contrast of low-field imaging with the high signal-to-noise ratio (SNR) of high static field imaging. T(1rho) relaxation and dispersion data presented in the current study help to optimize the rotating-frame MR imaging.  相似文献   

16.
Regional hyperthermia in combination with chemotherapy and/or radiotherapy has proven to be an effective treatment concept for locally advanced deep-seated tumors. Simultaneous MR-imaging could be a promising approach for therapy optimization. Purpose of this study was the in vivo investigation of temperature induced longitudinal relaxation time (T(1)) and blood flow changes in a tumor model. Using a 1.5 Tesla MR system, the T(1) sensitivity on temperature and the onset of tissue changes at temperatures >44 degrees C were investigated in muscle samples. Also, fourteen Syrian Golden Hamsters with amelanotic melanoma A-MEL-3 were examined during heating of the tumors. Temperature induced blood flow and T(1) changes were determined continuously during hyperthermia. Changes of T(1) correlated linearly with temperature over a wide range (27-44 degrees C) in the tissue sample. Tissue changes became notable above 44 degrees C. In the tumor model, relative changes of T(1) (unlike blood flow) showed linear correlation with temperature over the entire range of hyperthermia relevant temperatures (32-44 degrees C). For a low thermal dose, T(1) allows the assessment of temperature changes in tumors in vivo. At higher thermal doses, in addition to temperature changes, T(1) also shows tissue changes. Both temperature and tissue changes supply important information for hyperthermia.  相似文献   

17.
Fifteen patients with liver cirrhosis and two control groups were examined. The first control group consisted of 7 healthy volunteers, and the second group of 17 patients with nonfocal liver diseases. The T1 and T2 relaxation times were calculated from signal intensities read out from a region of interest centrally located in the liver. T1 relaxation time was longer in the patients with liver cirrhosis than in the two reference groups. Ten patients had a liver biopsy taken prior to the MRI study. No correlation was found between histopathology and the measured relaxation times.  相似文献   

18.
A method for acquiring triple quantum filtered (TQF) (23)Na NMR images is proposed that takes advantage of the differences in transverse relaxation rates of sodium to achieve positive intensity, PI, NMR signal. This PITQF imaging sequence has been used to obtain spatially resolved one-dimensional images as a function of the TQF creation time, tau, for two human spinal disc samples. From the images the different parts of the tissue, nucleus pulposus and annulus fibrosus, can be clearly distinguished based on their signal intensity and creation time profiles. These results establish the feasibility of (23)Na TQF imaging and demonstrate that this method should be applicable for studying human disc tissues as well as spinal disc degeneration.  相似文献   

19.
20.
Electron-spin-echo-detected EPR using an inversion-recovery three-pulse sequence permits EPR imaging selectivity based on electron spin longitudinal relaxation times. The feasibility is demonstrated with samples of coal, irradiated quartz, nitroxyl radicals, and galvinoxyl radicals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号