首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In recent years, original hybrid assemblies composed of a particle core surrounded by a lipid shell emerged as promising entities for various biotechnological applications. Their broadened bio-potentialities, ranging from model membrane systems or biomolecule screening supports, to substance delivery reservoirs or therapeutic vectors, are furthered by their versatility of composition due to the possible wide variation in the particle nature and size, as well as in the lipid formulation. The synthesis, the characteristics, and the uses of these Lipid/Particle assemblies encountered in the literature so far are reviewed, and classified according to the spherical core size in order to highlight general trends. Moreover, several criteria are particularly discussed: i) the interactions involved between the particles and the lipids, and implicitly the assembly elaboration mechanism, ii) the most suited techniques for an accurate characterization of the entities from structural and physicochemical points of view, and iii) the remarkable properties of the solid-supported lipid membrane obtained.  相似文献   

2.
A benzoylferrocene (BFc) supported 3-sn-phosphatidylcholine (PC) film electrode was prepared by casting the solution of BFc and PC in chloroform onto the surface of platinum (Pt). Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) results showed that BFc, retained in the biological membrane, acted as a shuttle for electron transfer across the supported bilayer lipid membranes (s-BLMs). Doping of BFc increased membrane conductivity, while electrochemical oxidation of BFc greatly changed the membrane conductivity, the membrane impedance characterized by charge transfer resistance (Rct) dramatically increased about 400 times (from 10.32 to 3919.67 kΩ). Interestingly, the electrochemical oxidized BFc buried in the membranes could be reduced by applying a low potential, and this led to recurrent of a conductive membrane. The conductivity of the s-BLMs could be controlled by the redox status of embedded BFc molecules. The approach provided a facile and novel way to electrochemically control the membrane conductance of s-BLMs by embedding BFc as a switchable redox mediator.  相似文献   

3.
The effect of D-glucose and insulin on conducting properties of supported bilayer lipid membranes (s-BLM) modified by anthraquinone-2-sulphonic acid (AQS) at the presence of potassium ferricyanide was studied by means of cyclic voltammetry (CV). Both the oxidation and the reduction current peaks were found to decrease at the presence of glucose in concentration range varying from 10 to 320 mM. The influence of insulin on membrane properties is ambiguous. While the pretreatment of membrane with 20 mU l(-1) of insulin evoked slight increase of the current with unchanged course of the dependence of peak current on glucose, the decrease of conductance was observed above 10(5) mU l(-1) of insulin.  相似文献   

4.
X Han  E Wang 《Analytical sciences》2001,17(10):1171-1174
Ferricyanide anion has usually been used as a marker of ion-channel sensors. In this work we first found that ferricyanide, itself, can act as a stimulus to regulate the permeability of sBLM prepared from didodecyldimethylammonium bromide (a kind of synthetic lipid) on a GC electrode. We used cyclic voltammetry and a.c. impedance to investigate this phenomenon. The interaction between sBLM and ferricyanide concerns time. Furthermore, we developed a sensor for ferricyanide anion. The ion-channel sensor is highly sensitive. It can detect ferricyanide concentration as low as 5 microM.  相似文献   

5.
6.
X-ray and neutron diffraction studies of a binary lipid membrane demonstrate that halothane at physiological concentrations produces a pronounced redistribution of lipids between domains of different lipid types identified by different lamellar d-spacings and isotope composition. In contrast, dichlorohexafluorocyclobutane (F6), a halogenated nonanesthetic, does not produce such significant effects. These findings demonstrate a specific effect of inhalational anesthetics on mixing phase equilibria of a lipid mixture.  相似文献   

7.
Ion binding to a lipid membrane is studied by application of a rapid solution exchange on a solid supported membrane. The resulting charge displacement is analyzed in terms of the affinity of the applied ions to the lipid surface. We find that chaotropic anions and kosmotropic cations are attracted to the membrane independent of the membrane composition. In particular, the same behavior is found for lipid headgroups bearing no charge, like monoolein. This general trend is modulated by electrostatic interaction of the ions with the lipid headgroup charge. These results cannot be explained with the current models of specific ion interactions.  相似文献   

8.
In order to probe the local dynamics of lipid bilayers in the gel phase, we measured the rotational time trajectories of a membrane probe, diI(3), in supported bilayers of DPPC (1,2-dipalmitoyl-sn-glycero-3-phosphocholine) using single molecule fluorescence polarization imaging. diI(3) has two hydrocarbon tails that mimic phospholipid tails and has its transition dipole moment lying mostly on the plane of the membrane; hence it is an excellent probe for rotational dynamics in membranes. Above the transition temperature, the probes are laterally mobile and do not display polarized emission. In the gel phase below the transition temperature, lateral mobility is severely reduced and the emission becomes polarized with its polarization direction changing in the milliseconds time scale. Molecule by molecule analysis of the rotational time scales revealed significant heterogeneities among molecules, much larger than would be due to statistical noise. Control experiments using small unilamellar vesicles suggest that the heterogeneities are not caused by surface interactions and are intrinsic to the gel phase membrane. The rotational dynamics is strongly temperature dependent and the thermally activated state for the rotational motion has a large entropic barrier (> 30kB), indicating that relatively large local disorder is required for the rotational motion to occur. Rotational hopping between discrete angles has been observed at the lowest temperatures (approximately 10 degrees C). Our results suggest that the gel phase membrane is not uniform at the microscopic level but is highly dynamic with the rigidity of local environments constantly changing.  相似文献   

9.
Neutron reflection has become a popular tool to study supported lipid membranes, demonstrating the advantages of the structural and compositional insights given by H/D contrast variation in biophysical membrane studies. While technical advances such as magnetic contrast variation and new data-analysis techniques have increased the accuracy of data modeling and interpretation, the use of complementary techniques has widened the range of membrane applications studied and allowed the investigation of more complex systems. This review describes the major technical developments in the membrane systems studied as well as their rapidly increasing number of applications.  相似文献   

10.
11.
We present a novel platform for investigating the composition-specific interactions of proteins (or other biologically relevant molecules) with model membranes composed of compositionally distinct domains. We focus on the interaction between a mitochondrial-specific lipid, cardiolipin (CL), and a peripheral membrane protein, cytochrome c (cyt c). We engineer vesicles with compositions such that they phase separate into coexisting liquid phases and the lipid of interest, CL, preferentially localizes into one of the domains (the liquid disordered (L(d)) phase). The presence of CL-rich and CL-depleted domains within the same vesicle provides a built-in control experiment to simultaneously observe the behavior of two membrane compositions under identical conditions. We find that cyt c binds strongly to CL-rich domains and observe fascinating morphological transitions within these regions of membrane. CL-rich domains start to form small buds and eventually fold up into a collapsed state. We also observe that cyt c can induce a strong attraction between the CL-rich domains of adjacent vesicles as demonstrated by the development of large osculating regions between these domains. Qualitatively similar behavior is observed when other polycationic proteins or polymers of a similar size and net charge are used instead of cyt c. We argue that these striking phenomena can be simply understood by consideration of colloidal forces between the protein and the membrane. We discuss the possible biological implications of our observations in relation to the structure and function of mitochondria.  相似文献   

12.
The moving edge of a hydrodynamically manipulated supported lipid bilayer (SLB) can be used to catalyze SLB formation of adsorbed lipid vesicles that do not undergo spontaneous SLB formation upon adsorption on SiO(2). By removing the lipid reservoir of an initially formed SLB, we show how a hydrodynamically moved SLB patch composed of POPC can be used to form isolated SLBs with compositions that to at least 95% represent that of the adsorbed lipid vesicles. The concept is used to investigate the diffusivity of lissamine rhodamine B 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (rhodamine-DHPE) in SLBs made from complex lipid compositions, revealing a decrease in diffusivity by a factor of 2 when the cholesterol content was increased from 0% to 50%. We also demonstrate how the concept can be used to induce stationary domains in SLBs containing 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE), and cholesterol (39:21:40 mol %, respectively). Because the method serves as a means to form SLBs with lipid compositions that hamper SLB formation via spontaneous rupture of adsorbed lipid vesicles, it opens up the possibility for new biophysical investigations of SLBs with more nativelike compositions.  相似文献   

13.
Recent experiments demonstrate transfer of lipid molecules between a charged, supported lipid membrane (SLB) and vesicles of opposite charge when the latter adsorb on the SLB. A simple phenomenological bead model has been developed to simulate this process. Beads were defined to be of three types, ‘n’, ‘p’, and ‘0’, representing POPS (negatively charged), POEPC (positively charged), and POPC (neutral but zwitterionic) lipids, respectively. Phenomenological bead–bead interaction potentials and lipid transfer rate constants were used to account for the overall interaction and transfer kinetics. Using different bead mixtures in both the adsorbing vesicle and in the SLB (representing differently composed/charged vesicles and SLBs as in the reported experiments), we clarify under which circumstances a vesicle adsorbs to the SLB, and whether it, after lipid transfer and changed composition of the SLB and vesicle, desorbs back to the bulk again or not. With this model we can reproduce and provide a conceptual picture for the experimental findings.  相似文献   

14.
Nanoscale imaging of domains in supported lipid membranes   总被引:7,自引:0,他引:7  
The formation of domains in supported lipid membranes has been studied extensively as a model for the 2D organization of cell membranes. The compartmentalization of biological membranes to give domains such as cholesterol-rich rafts plays an important role in many biological processes. This article summarizes experiments from the author's laboratory in which a combination of atomic force microscopy and near-field scanning optical microscopy is used to probe phase separation in supported monolayers and bilayers as models for membrane rafts. These techniques are used to study binary and ternary lipid mixtures that have gel-phase or liquid-ordered domains that vary in size from tens of nanometers to tens of micrometers, surrounded by a fluid-disordered membrane. Examples are presented in which these models are used to investigate the distribution of glycolipid membrane raft markers and the preference for peptide and protein localization in ordered versus fluid membrane phases. Finally, the enzyme-mediated restructuring of membranes containing liquid-ordered domains provides an in vitro model for the coalescence of membrane rafts to give signaling platforms. Overall, the results demonstrate the importance of using techniques that can probe the nanoscale organization of membranes and of combining techniques that yield complementary information. Furthermore, the ability of supported lipid bilayers to model some aspects of membrane compartmentalization provides an important approach to understanding natural membranes.  相似文献   

15.
Understanding the interaction between functional nanoparticles and cell membranes is critical to use nanomaterials for broad biomedical applications with minimal cytotoxicity. In this work, we have investigated the effect of adsorbed semihydrophobic nanoparticles (NPs) on the dynamics and morphology of model cell membranes. We have systematically varied the degree of surface hydrophobicity of carboxyl end-functionalized polystyrene NPs of varied size in buffer solutions with varied ionic strength. It is observed that semihydrophobic NPs can readily adsorb on neutral SLBs and drag lipids from SLBs to NP surfaces. Above a critical NP concentration, the disruption of SLBs is observed, accompanied with the formation and rapid growth of lipid-poor regions on NP-adsorbed SLBs. In the study of the effect of solution ionic strength on NP surface hydrophobic degree and the growth of lipid-poor regions, we have concluded that the hydrophobic interaction enhanced by screened electrostatic interaction underlies the envelopment of NPs by lipids that are attracted from SLBs to the surface of NPs or their aggregates. Hence, the formation and growth of lipid-poor regions, or vaguely referred as "pores" or "holes" in the literature, can be controlled by NP concentration, size, and surface hydrophobicity, which is critical to design functional nanomaterials for effective nanomedicine while minimizing possible cytotoxicity.  相似文献   

16.
Langmuir-Blodgett and Langmuir-Schaeffer methods were employed to deposit a mixed bilayer consisting of 90% of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 10% of gramicidin (GD), a short 15 residue ion channel forming peptide, onto a Au(111) electrode surface. This architecture allowed us to investigate the effect of the electrostatic potential applied to the electrode on the orientation and conformation of DMPC molecules in the bilayer containing the ion channel. The charge density data were determined from chronocoulometry experiments. The electric field and the potential across the membrane were determined through the use of charge density curves. The magnitudes of potentials across the gold-supported biomimetic membrane were comparable to the transmembrane potential acting on a natural membrane. The information regarding the orientation and conformation of DMPC and GD molecules in the bilayer was obtained from photon polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) measurements. The results show that the bilayer is adsorbed, in direct contact with the metal surface, when the potential across the interface is more positive than -0.4 V and is lifted from the gold surface when the potential across the interface is more negative than -0.4 V. This change in the state of the bilayer has a significant impact on the orientation and conformation of the phospholipid and gramicidin molecules. The potential induced changes in the membrane containing peptide were compared to the changes in the structure of the pure DMPC bilayer determined in earlier studies.  相似文献   

17.
Using a simple phenomenological model of a lipid bilayer and a surface, simulations were performed to study the bilayer-induced vesicle rupture probability as a vesicle adsorbs adjacently to a bilayer patch already adsorbed on the surface. The vesicle rupture probability was studied as a function of temperature, vesicle size, and surface-bilayer interaction strength. From the simulation data, estimates of the apparent activation energy for bilayer-induced vesicle rupture were calculated, both for different vesicle sizes and for different surface-bilayer interaction strengths.  相似文献   

18.
A novel piezoelelctric biosensor has been developed for cholera toxin (CT) detection based on the analyte-mediated surface-agglutination of ganglioside (GM1)-functionalized liposomes. To achieve a CT-specific agglutination at the surface, the gold electrode is modified by a GM1-functionalized supported lipid membrane via spontaneous spread of the liposomes on a self-assembled monolayer of a long-chain alkanethiol. In the presence of CT, the GM1-incorporated liposomes in assay medium will rapidly specifically agglutinate at the electrode surface through the binding of CT to GM1 on the electrode surface and the liposome interface. This results in an enormous mass loading on the piezoelelctric crystal as well as a significant increase of density and viscosity at the interface, thereby generating a decrease in frequency of the piezoelelctric crystal. The combination of mass loading with interfacial change in the surface-agglutination reaction allows the developed piezoelelctric biosensor to show substantial signal amplification in response to the analyte CT. The detection limit can be achieved as low as 25 ng mL−1 CT. This is the first demonstration on CT detection based on specific surface-agglutination of GM1-modified liposomes. The supported lipid layer based sensing interface can be prepared readily and renewably, making the developed technique especially useful for simple, reusable and sensitive determination of proteins.  相似文献   

19.
Solid supported lipid bilayers are rapidly delaminated when drawn through the air/water interface. We have discovered that a close packed monolayer of specifically bound protein prevents this process. The protection mechanism worked in two ways. First, when protein-protected bilayers were drawn through the air/water interface, a thin bulk water layer was visible over the entire bilayer region, thereby preventing air from contacting the surface. Second, a stream of nitrogen was used to remove all bulk water from a protected bilayer, which remained fully intact as determined by fluorescence microscopy. The condition of this dried bilayer was further probed by fluorescence recovery after photobleaching. It was found that lipids were not two-dimensionally mobile in dry air. However, when the bilayer was placed in a humid environment, 91% of the bleached fluorescence signal was recovered, indicating long-range two-dimensional mobility. The diffusion coefficient of lipids under humid conditions was an order of magnitude slower than the same bilayer under water. Protected bilayers could be rehydrated after drying, and their characteristic diffusion coefficient was reestablished. Insights into the mechanism of bilayer preservation were suggested.  相似文献   

20.
A new and simple method for creating superhydrophilic micropatterns on a superhydrophobic surface is demonstrated. The method is based on printing an "ink", an ethanol solution of a phospholipid, onto a porous superhydrophobic surface and, thus, is compatible with a variety of commonly available printing techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号