共查询到20条相似文献,搜索用时 46 毫秒
1.
Antoine Sellier 《Comptes Rendus Mecanique》2005,333(5):413-418
The sedimentation of small arbitrarily-shaped solid bodies near a solid plane is addressed by discarding inertial effects and using 6N boundary-integral equations. Numerical results for 2 or 3 identical spheres reveal that combined wall–particle and particle–particle interactions deeply depend on the cluster's geometry and distance to the wall and may even cancel for a sphere which then moves as it were isolated. To cite this article: A. Sellier, C. R. Mecanique 333 (2005). 相似文献
2.
Antoine Sellier 《Comptes Rendus Mecanique》2005,333(2):111-116
The slow migration of N spherical bubbles under combined buoyancy and thermocapillarity effects is investigated by appealing solely to boundary-integral equations. In addition to the theory and the associated implementation strategy, preliminary numerical results are both presented and discussed for a few clusters involving 2, 3, 4 or 5 bubbles with a special attention paid to the case of rigid configurations. To cite this article: A. Sellier, C. R. Mecanique 333 (2005). 相似文献
3.
Boundary integral equations are well suitable for the analysis of seismic waves propagation in unbounded domains. Formulations in elastodynamics are well developed. In contrast, for the dynamic analysis of viscoelastic media, there are very seldom formulations by boundary integral equations. In this Note, we propose a new and simple formulation of time harmonic viscoelasticity with the Zener model, which reduces to classical elastodynamics if a compatibility condition is satisfied by boundary conditions. Intermediate variables which satisfy the classical elastodynamic equations are introduced. It makes it possible to utilize existing numerical tools of time harmonic elastodynamics. To cite this article: S. Chaillat, H.D. Bui, C. R. Mecanique 335 (2007). 相似文献
4.
We study the flow of a viscous fluid through a pipe with helical shape parameterized with , where the small parameter stands for the distance between two coils of the helix. The pipe has small cross-section of size . Using the asymptotic analysis of the microscopic flow described by the Navier–Stokes system, with respect to the small parameter that tends to zero, we find the effective fluid flow described by an explicit formula of the Poisseuile type including a small distorsion due to the particular geometry of the pipe. To cite this article: E. Marušić-Paloka, I. Pažanin, C. R. Mecanique 332 (2004).
Résumé
On considère un écoulement dans un tube de section circulaire et de forme hélicoïdale paramétré par , où est la distance entre deux tours de la spirale. Le rayon de la section du tube est lui aussi supposé égal à . A partir de l'écoulement microscopique décrit par le système de Navier–Stokes et en utilisant l'analyse asymptotique par rapport à ce petit paramètre on obtient l'écoulemment effectif décrit par une formule explicite de type Poiseuille associée à une petite déviation due à la géometrie du tube. Pour citer cet article : E. Marušić-Paloka, I. Pažanin, C. R. Mecanique 332 (2004). 相似文献5.
An experimental mixing layer in water at Reynolds number 440 is investigated. A colored viscoelastic solution is introduced in the shear layer before the roll-up dynamics. On the basis of flow visualization and local velocity measurements, it is found that compared to the Newtonian case, the roll-up process is affected by the non-Newtonian behavior of the viscoelastic solution. The effect consists of the appearance of secondary eddies in the mixing layer corresponding to the production of higher harmonics in the vorticity distribution. Consequently, there is a frequency doubling of the local velocity oscillations in the mixing layer. To cite this article: F. Sausset et al., C. R. Mecanique 332 (2004).
Résumé
Une étude expérimentale de la couche de mélange à un nombre de Reynolds de 440 est réalisée. Une solution viscoélastique colorée est introduite dans la couche cisaillée stationnaire juste avant la formation des tourbillons. En utilisant un mesure locale de la vitesse et une technique de visualisation par fluorescence, il est montré que la formation tourbillonnaire est affectée par le comportement non-Newtonien de la solution viscoélastique par rapport au cas Newtonien. Cet effet correspond à la formation de tourbillons secondaires produisant un harmonique supérieur dans la répartition spatiale de vorticité. En conséquence, un doublement de la fréquence des oscillations de la vitesse locale dans la couche de mélange est observé. Pour citer cet article : F. Sausset et al., C. R. Mecanique 332 (2004). 相似文献6.
We investigate the behavior of fluid–particle mixtures subject to shear stress, by mean of direct simulation. This approach is meant to give some hints to explain the influence of interacting red cells on the global behavior of the blood. We concentrate on the apparent viscosity, which we define as a macroscopic quantity which characterizes the resistance of a mixture against externally imposed shear motion. Our main purpose is to explain the non-monotonous variations of this apparent viscosity when a mixture of fluid and interacting particles is submitted to shear stress during a certain time interval. Our analysis of these variations is based on preliminary theoretical remarks, and some computations for some well-chosen static configurations. To cite this article: A. Lefebvre, B. Maury, C. R. Mecanique 333 (2005). 相似文献
7.
We investigate the half-space problem of evaporation and condensation in the scope of discrete kinetic theory. Exact solutions are found to the boundary value problem and the initial boundary value problems of the flow in the half space for a discrete velocity model. The results are used to analyze the transition of the unsteady solutions towards steady states. To cite this article: A. d'Almeida, C. R. Mecanique 336 (2008). 相似文献
8.
Antoine Sellier 《Comptes Rendus Mecanique》2003,331(11):753-758
A whole boundary-integral formulation is proposed to determine the rigid-body motions of two solid and insulating particles, freely-suspended in a metal liquid and subject to uniform ambient electric and magnetic fields. As revealed by our numerical results, particle–particle interactions may become significant for close enough bodies. To cite this article: A. Sellier, C. R. Mecanique 331 (2003). 相似文献
9.
10.
This Note presents an effective and accurate method for numerical calculation of the Green's function G associated with the time harmonic elasticity system in a half-plane, where an impedance boundary condition is considered. The need to compute this function arises when studying wave propagation in underground mining and seismological engineering. To theoretically obtain this Green's function, we have drawn our inspiration from the paper by Durán et al. (2005), where the Green's function for the Helmholtz equation has been computed. The method consists in applying a partial Fourier transform, which allows an explicit calculation of the so-called spectral Green's function. In order to compute its inverse Fourier transform, we separate as a sum of two terms. The first is associated with the whole plane, whereas the second takes into account the half-plane and the boundary conditions. The first term corresponds to the Green's function of the well known time-harmonic elasticity system in (cf. J. Dompierre, Thesis). The second term is separated as a sum of three terms, where two of them contain singularities in the spectral variable (pseudo-poles and poles) and the other is regular and decreasing at infinity. The inverse Fourier transform of the singular terms are analytically computed, whereas the regular one is numerically obtained via an FFT algorithm. We present a numerical result. Moreover, we show that, under some conditions, a fourth additional slowness appears and which could produce a new surface wave. To cite this article: M. Durán et al., C. R. Mecanique 334 (2006). 相似文献
11.
The primary atomization was studied in a 300 μm thickness water sheet, generated by a planar airblast atomizer. The research novelty consisted in increasing the airflow absolute pressure from atmospheric conditions to 6 bar. The experimental techniques employed included Oscillometry by Laser Intensity Reflexion (ORIL), Laser Doppler Velocimetry (LDV) and flow visualization by fast video camera. The atomization mechanisms, described in the literature at atmospheric environments, were observed at high pressure conditions, for a constant momentum flux ratio. Furthermore, a new atomization mechanism was observed at high values of this ratio. Finally, dimensionless relations have been proposed for the global oscillation frequency, minimum air oscillation velocity, break-up distance and transversal wavelength. To cite this article: V.G. Fernandez et al., C. R. Mecanique 337 (2009). 相似文献
12.
13.
14.
The present study uses the LES code AVBP, developed at CERFACS, to simulate transcritical flows. Real gas effects are accounted for by the use of a cubic equation of state, in conjunction with appropriate viscosity and thermal conductivity coefficients. First a single nitrogen round jet at supercritical pressure injected in a gaseous reservoir is simulated. Two cases are considered, one demonstrating a transcritical injection (high density injection), the other being directly injected at supercritical temperature (lower density injection). Comparison with available measurements shows good agreement. Finally, the simulation of a reacting case from the Mascotte bench (ONERA) is performed, consisting in a single coaxial injector injecting transcritical oxygen and supercritical hydrogen in a 60 bar chamber. Mean flow characteristics are in good agreement with the experimental observations of OH* emission, whereas temperature comparisons are more difficult to interpret. To cite this article: T. Schmitt et al., C. R. Mecanique 337 (2009). 相似文献
15.
We derive a closed system of effective equations describing a time-dependent flow of a viscous incompressible Newtonian fluid through a long and narrow elastic tube. The 3D axially symmetric incompressible Navier–Stokes equations are used to model the flow. Two models are used to describe the tube wall: the linear membrane shell model and the linearly elastic membrane and the curved, linearly elastic Koiter shell model. We study the behavior of the coupled fluid–structure interaction problem in the limit when the ratio between the radius and the length of the tube, , tends to zero. We obtain the reduced equations that are of Biot type with memory. An interesting feature of the reduced equations is that the memory term explicitly captures the viscoelastic nature of the coupled problem. Our model provides significant improvement over the standard 1D approximations of the fluid–structure interaction problem, all of which assume an ad hoc closure assumption for the velocity profile. We performed experimental validation of the reduced model using a mock circulatory flow loop assembled at the Cardiovascular Research Laboratory at the Texas Heart Institute. Experimental results show excellent agreement with the numerically calculated solution. Major applications include blood flow through large human arteries. To cite this article: S. Čanić et al., C. R. Mecanique 333 (2005). 相似文献
16.
Antoine Sellier 《Comptes Rendus Mecanique》2003,331(6):401-406
Particle–boundary and particle–particle interactions in Electrophoresis are examined by considering a 2-particle cluster near a plane boundary. The advocated treatment holds for two insulating particles of arbitrary shapes and zeta potential functions and resorts to 13 boundary-integral equations. Preliminary results reveal that, depending upon the addressed velocity nature (translational or angular), wall–particle may be stronger or weaker than particle–particle interactions. To cite this article: A. Sellier, C. R. Mecanique 331 (2003). 相似文献
17.
A coupled fluid-stucture model is proposed to study the dynamics of a flexible crop canopy exposed to wind. The canopy is represented by an elastic continuous medium and coupled to the wind mixing layer through a drag load. The mixing layer instability is shown to remain the principle instability mechanism but its characteristics are modified when taking into account the flexible canopy. The size of the coherent structures is decreased as well as the instability growth rate. To cite this article: C. Py et al., C. R. Mecanique 332 (2004). 相似文献
18.
The method of asymptotic partial domain decomposition for thin tube structures (finite unions of thin cylinders) is revisited. Its application to the Newtonian and non-Newtonian flows in great systems of vessels is considered. The possibility of a parallelization of its algorithm is discussed for linear and non-linear models. 相似文献
19.
P. Wolf G. Staffelbach A. Roux L. Gicquel T. Poinsot V. Moureau 《Comptes Rendus Mecanique》2009,337(6-7):385-394
Increasingly stringent regulations and the need to tackle rising fuel prices have placed great emphasis on the design of aeronautical gas turbines, which are unfortunately more and more prone to combustion instabilities. In the particular field of annular combustion chambers, these instabilities often take the form of azimuthal modes. To predict these modes, one must compute the full combustion chamber, which remained out of reach until very recently and the development of massively parallel computers. In this article, full annular Large Eddy Simulations (LES) of two helicopter combustors, which differ only on the swirlers' design, are performed. In both computations, LES captures self-established rotating azimuthal modes. However, the two cases exhibit different thermo-acoustic responses and the resulting limit-cycles are different. With the first design, a self-excited strong instability develops, leading to pulsating flames and local flashback. In the second case, the flames are much less affected by the azimuthal mode and remain stable, allowing an acceptable operation. Hence, this study highlights the potential of LES for discriminating injection system designs. To cite this article: P. Wolf et al., C. R. Mecanique 337 (2009). 相似文献
20.
Jrmie Chicheportiche Xavier Merle Xavier Gloerfelt Jean-Christophe Robinet 《Comptes Rendus Mecanique》2008,336(7):586-591
The first bifurcation in a lid-driven cavity characterized by three-dimensional Taylor–Görtler-Like instabilities is investigated for a cubical cavity with spanwise periodic boundary conditions at Re=1000. The modes predicted by a global linear stability analysis are compared to the results of a direct numerical simulation. The amplification rate, and the shape of the three-dimensional perturbation fields from the direct numerical simulation are in very good agreement with the characteristics of the steady S1 mode from the stability analysis, showing that this mode dominates the other unstable unsteady modes. To cite this article: J. Chicheportiche et al., C. R. Mecanique 336 (2008). 相似文献