首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the present article, a dataset of 63 quinoxaline derivatives were taken for antimalarial activity and pharmacophore were developed. Atom based method was used to develop a three dimensional quantitative structure activity relationship (3D-QSAR) model. On comparison of all statistical parameters, model AHRRR23 was found to be the most effective and predictive QSAR model as it satisfied all statistical parameters of a good model. The model AHRRR23 showed an adequate R2 value for the training set 0.9446, good predictive power with Q2 of 0.6409, good F- value, low SD 0.1218 value and outstanding Pearson-R values and low RMSE 0.2779 values of the model. The docking studies also gives very good results with good RMSD values. 3D QSAR, docking and ADME studies exhibits that the developed model could be employed as a potential lead for further study as antimalarial drug.  相似文献   

2.
The versatility of multicomponent Biginelli’s reaction is exploited in the development of proline and cyclized cysteine tethered conjugates of monastrol, a kinesin Eg5 inhibitor. Ten new conjugates are synthesized focusing on structural replacement of the ester moiety (C-5 position) of the monastrol backbone with amino acid based amide moieties. On cytotoxic evaluation, conjugate 24 has shown promising in vitro cytotoxic activity against leukemia. Molecular docking studies revealed that the conjugates 19 and 24 exhibit better interaction at kinesin Eg5 receptor compared to monastrol. Moreover, computational calculations and predictions of important molecular properties suggest that these new amino acid based conjugates could be further improved to provide potential anticancer agents.  相似文献   

3.
ATP dependent ParE enzyme is as an attractive target for the development of antibacterial agents. Atom based 3D-QSAR model AADHR.187 was developed based on the thirty eight Escherichia coli ParE inhibitors. The generated model showed statistically significant coefficient of determinations for the training (R2 = 0.985) and test (R2 = 0.86) sets. The cross-validated correlation coefficient (q2) was 0.976. The utility of the generated model was validated by the enrichment study. The model was also validated with structurally diverse external test set of ten compounds. Contour plot analysis of the generated model unveiled the chemical features necessary for the E. coli ParE enzyme inhibition. Extra-precision docking result revealed that hydrogen bonding and ionic interactions play a major role in ParE protein-ligand binding. Binding free energy was computed for the data set inhibitors to validate the binding affinity. A 30-ns molecular dynamics simulation showed high stability and effective binding of inhibitor 34 within the active site of ParE enzyme. Using the best fitted model AADHR.187, pharmacophore-based high-throughput virtual screening was performed to identify virtual hits. Based on the above studies three new molecules are proposed as E. coli ParE inhibitors with high binding affinity and favourable ADME properties.  相似文献   

4.
A series of new 3-benzoheterocyclic substituted pyridopyrimidines were designed and synthesized. Structures of the compounds were determined by IR, 1H NMR, and elemental analyses. The anti- proliferation activity of 13 novel compounds was evaluated in A549, HL-60, BGC-823 and SMMC-7721 cell lines. Compounds 3, 5, 7, 8, 9,10 showed potent inhibitory activity against the four tested cancer cell lines. These six compounds were examined for Top I inhibition at 100 μmol/L by measuring the relaxation of supercoiled DNA in plasmid pBR322. Most of the tested compounds inhibited the enzyme at this concentration. The most potent compound 9 was as potent as camptothecin.  相似文献   

5.
Heat shock protein 70 is an effective anticancer target as it influences many signaling pathways. Hence the study investigated the important pharmacophore feature required for ATPase inhibitors of HSP70 by generating a ligand based pharmacophore model followed by virtual based screening and subsequent validation by molecular docking in Discovery studio V4.0. The most extrapolative pharmacophore model (hypotheses 8) consisted of four hydrogen bond acceptors. Further validation by external test set prediction identified 200 hits from Mini Maybridge, Drug Diverse, SCPDB compounds and Phytochemicals. Consequently, the screened compounds were refined by rule of five, ADMET and molecular docking to retain the best competitive hits. Finally Phytochemical compounds Muricatetrocin B, Diacetylphiladelphicalactone C, Eleutheroside B and 5-(3-{[1-(benzylsulfonyl)piperidin-4-yl]amino}phenyl)- 4-bromo-3-(carboxymethoxy)thiophene-2-carboxylic acid were obtained as leads to inhibit the ATPase activity of HSP70 in our findings and thus can be proposed for further in vitro and in vivo evaluation.  相似文献   

6.
Renin is an aspartyl protease of the renin–angiotensin system (RAS) and the first enzyme of the biochemical pathway for the generation of angiotensin II – a potent vasoconstrictor involved in the maintenance of cardiovascular homeostasis and the regulation of blood pressure. High enzymatic specificity of renin and its involvement in the catalysis of the rate-limiting step of the RAS hormone system qualify it as a good target for inhibition of hypertension and other associated diseases. Ligand-based pharmacophore model (Hypo1) was generated from a training set of 24 compounds with renin inhibitory activity. The best hypothesis consisted of one Hydrogen Bond Acceptor (HBA), three Hydrophobic Aliphatic (HY-Al) and one Ring Aromatic (AR) features. This well-validated pharmacophore hypothesis (correlation coefficient 0.95) was further utilized as a 3D query to screen database compounds, which included structures from two natural product repositories. These screened compounds were further analyzed for drug-likeness and ADMET studies. The compounds which satisfied the qualifying criteria were then subjected to molecular docking and Density Functional Theory (DFT) analysis in order to discern their atomic level interactions at the active site of the 3D structure of rennin. The pharmacophore-based modelling that has been used to generate the novel findings of the present study would be an avant-garde approach towards the development of potent inhibitors of renin.  相似文献   

7.
Peptidomimetics with three types, as the structural or functional mimetics of natural active peptides, can preserve the bioactivity and improve the bioavailability and the specificity towards the targets of the lead peptides. Peptidomimetics of high bioactivity can be designed through various ways including conformation restriction, modification and non-peptide design. Recently the concentration on the development of cancer chemotherapeutic drugs was transferred from cytotoxic drugs to target-based drugs, and many proteases and peptidases that play key roles in the process of tumor genesis and development was discovered, which means that peptidomimetics as potential cancer chemotherapeutic drugs should be paid close attention to. Our laboratory has focused on the development of small-molecule peptidomimetic inhibitors of APN, MMPs and HDACs as target-based anticancer agents. These three zinc-dependent metalloproteinases play very important roles in the process of tumor genesis, invasion, metastasis, angiogenesis and matrix degradation, so small-molecule peptidomimetic inhibitors based on them would be quite potential in the development of chemotherapeutic drugs with high selectivity. Supported by the National High Technology Research and Development Program of China (863 Project) (Grant No. 2007AA02Z314), the National Natural Science Foundation of China (Grant Nos. 90713041 & 30772654), and the Doctoral Fund of Ministry of Education of China (Grant No. 20060422029)  相似文献   

8.
We synthesized two new series of 3-substituted-6-(2,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazines and analysed them for a potential role as antitumor agents. Twenty-two compounds were obtained, and four molecular structures were determined by X-ray diffraction analysis. Using flow cytometry and MTT assay, potential action on cell toxicity was determined for each of the compounds for four cancer cell lines. The potency and selectivity demonstrated by these compounds are dependent on the cancer cell line, where the following compounds were found the most promising agents against certain cell lines: compounds 1i and 1j for HL-60 cells, 1a and 1b on HCT116 cells, 1f on Hela cells and 2h on H1975 cells. The action exerted by these compounds is comparable to the well-known cancer treatment drug etoposide and higher than vatalanib. To arrive at the structural requirements for activity on each cell line, a SAR and 3D-QSAR analysis was carried out. From the 3D-QSAR models, steric and electronic features were identified in the aromatic centres, and were key components for cytotoxic activity on HL-60 cell lines. The cytometry results suggest that some tetrazine derivatives induce apoptosis on HCT116 cells.  相似文献   

9.
Mitotic Kinesin motors, Eg5 and Kif15, have recently emerged as good targets for cancer as they play an inevitable role during mitosis. But, most of the Eg5 inhibitors were found ineffective when the cancer cells develop resistance to them by escalating the expression of Kif15 as alternative to Eg5. Therefore, the drugs that target Kif15 became necessary to be used either as a single or in combination with Eg5 inhibitors. The present study used 39 dihydropyrazole and 13 dihydropyrrole derivatives that were having in vitro inhibitory potential against kinesin motors to develop a common pharmacophore hypothesis AHRR and atom-based QSAR model. The model was used for virtual screening of ZINC database and the resultant hits were docked against Kif15. The four drug candidates with high docking score were examined for their activity and pharmacokinetic behaviour. Based on the results these drugs could be considered as lead candidates in further drug development for cancer.  相似文献   

10.
B-Raf kinase has been identified as an important target in recent cancer treatment. In order to discover structurally diverse and novel B-Raf inhibitors (BRIs), a virtual screening of BRIs against ZINC database was performed by using a combination of pharmacophore modelling, molecular docking, 3D-QSAR model and binding free energy (ΔGbind) calculation studies in this work. After the virtual screening, six promising hit compounds were obtained, which were then tested for inhibitory activities of A375 cell lines. In the result, five hit compounds show good biological activities (IC50 < 50 μM). The present method of virtual screening can be applied to find structurally diverse inhibitors, and the obtained five structurally diverse compounds are expected to develop novel BRIs.  相似文献   

11.
12.
The discovery of ATP competitive CDK4 inhibitors is an on-going challenging task in cancer therapy. Here, an attempt has been made to develop new leads targeting ATP binding site of CDK4 by applying 3D-QSAR pharmacophore mapping and molecular docking methods The outcome of 6 leads offers a significant contribution for selective CDK4 inhibition, since they show potential binding interactions with Val96, Arg101, and Glu144 residues of CDK4, that are unique and from other kinases. It is worth noting that there is a striking similarity in binding interactions of the leads and known CDK4 inhibitors, namely Abemaciclib, Palbociclib and Ribociclib. Further key features, including high dock score value, good predicted activity, scaffold diversity, and the acceptable ADME profile of leads, provide a great opportunity for the development of highly potent and selective ATP competitive inhibitors of CDK4.  相似文献   

13.
14.
Background & objectiveEpidermal growth factor receptor (EGFR) signaling pathway is one of the promising and well-established targets for anticancer therapy. The objective of the present study was to identify new EGFR inhibitors using ligand and structure-based drug designing methods, followed by a synthesis of selected inhibitors and evaluation of their activity.MethodsA series of C-7-hydroxyproton substituted chrysin derivatives were virtually drawn to generate a small compound library that was screened using 3D QSAR model created from forty-two known EGFR tyrosine kinase inhibitors. Next, the obtained hits with fitness score ≥ 1.0 were subjected to molecular docking analysis. Based on the predicted activity and XP glide score, three EGFR inhibitors were synthesized and characterized using 1H-NMR, 13C-NMR and MS. Finally, comparative in vitro investigation of the biological activity of synthesized inhibitors was performed with that of the parent molecule, chrysin.ResultsThe data depicted a 3.2–fold enhanced cytotoxicity of chrysin derivative, CHM-04 against breast cancer cells as compared with chrysin as well as its binding with EGFR protein. Furthermore, the biological activity of CHM-04 was comparable to the standard EGFR inhibitor, AG1478 in increasing apoptosis and decreasing the migratory potential of triple-negative breast cancer cells as well as significantly lowering the mammosphere forming ability of breast cancer stem cells.ConclusionThe present study suggests CHM-04, an EGFR inhibitor possessing drug-like properties as a plausible therapeutic candidate against breast cancer.  相似文献   

15.
16.
3CL proteases (3CLpro) are only found in RNA viruses and have a central role in polyprotein processing during replication. Therefore, 3CLpro has emerged as promising drug target for therapeutic treatment of infections caused by Coronaviruses. In the light of the recent major outbreak of the SARS-CoV-2 virus and the continuously rising numbers of infections and casualties, there is an urgent need for quickly available drugs or vaccines to stop the current COVID-19 pandemic. Repurposing of approved drugs as 3CLpro inhibitors could dramatically shorten the period up to approval as therapeutic against SARS-CoV-2, since pharmacokinetics and toxicity is already known. Several known drugs, e.g. oxytetracycline, doxorubicin, kanamycin, cefpiramide, teniposide, proanthocyanidin and salvianolic acid B, but also not-approved active compounds from the ZINC15 library were identified as new potential inhibitors of 3CLpro by using different complementary virtual screening and docking approaches. These compounds have the potential to be further optimized using structure based drug design as demonstrated for oxytetracycline.  相似文献   

17.
Xanthene derivatives were synthesized and evaluated for their potential as trypanothione reductase (TryR) inhibitors and chloroquine (CQ) potentiating agents. Some derivatives displayed inhibitory activity against TryR comparable to known tricyclic anti-depressants. On the other hand a number of derivatives increased CQ accumulation and potentiating effects in a resistant strain of Plasmodium falciparum with one compound also displaying strong intrinsic antimalarial activity.  相似文献   

18.
3D-QSAR and molecular modeling of HIV-1 integrase inhibitors   总被引:1,自引:0,他引:1  
Three-dimensional quantitative structure-activity relationship (3D QSAR) methods were applied on a series of inhibitors of HIV-1 integrase with respect to their inhibition of 3-processing and 3-end joining steps in vitro.The training set consisted of 27 compounds belonging to the class of thiazolothiazepines. The predictive ability of each model was evaluated using test set I consisting of four thiazolothiazepines and test set II comprised of seven compounds belonging to an entirely different structural class of coumarins. Maximum Common Substructure (MCS) based method was used to align the molecules and this was compared with other known methods of alignment. Two methods of 3D QSAR: comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were analyzed in terms of their predictive abilities. CoMSIA produced significantly better results for all correlations. The results indicate a strong correlation between the inhibitory activity of these compounds and the steric and electrostatic fields around them. CoMSIA models with considerable internal as well as external predictive ability were obtained. A poor correlation obtained with hydrophobic field indicates that the binding of thiazolothiazepines to HIV-1 integrase is mainly enthalpic in nature. Further the most active compound of the series was docked into the active site using the crystal structure of integrase. The binding site was formed by the amino acid residues 64-67, 116, 148, 151-152, 155-156, and 159. The comparison of coefficient contour maps with the steric and electrostatic properties of the receptor shows high level of compatibility.  相似文献   

19.
In our ongoing efforts to discover new potent histone deacetylase (HDAC) inhibitors as promising anticancer candidates, we designed and synthesized a small collection of 3-substituted amines possessing macro heterocyclic skeletons bearing variable-length tails. As a metal binder domain, all the compounds possess an amide function suitable for Zn2+ chelation in the enzyme active site. A combination of solution and solid phase techniques were employed to synthesize the compounds and, as the key synthetic step to obtain the rings, a ring closing metathesis (RCM) reaction was adopted. The putative affinity of the compounds for the histone deacetylase-like protein (HDLP) model receptor active site was explored through docking calculations, and we also report preliminary studies on their pharmacological properties.  相似文献   

20.
A new series of pyridothienopyrimidine derivatives was designed and evaluated as antimicrobial and anticancer agents. The target compounds were synthesized starting with 3-aminothieno[2,3-b]pyridine-2-carboxamide derivative 1 which underwent cyclocondensation reaction with aromatic aldehydes to give the key intermediates 2a,b. By further treatment of 2a,b with various reagents, the target 2,4-disubstituted-pyrido[3′,2′:4,5]thieno[2,3-d]pyrimidines 3a,b11a,b were obtained. To evaluate the antimicrobial activity of the new compounds, they were tested against five bacterial and five fungal strains. Compounds 6c, 8b, 9a and 9b revealed the most significant antimicrobial activity against the tested microorganisms with MIC values range (4–16 μg/mL). Also, compounds 2a,b11a,b were screened for their in vitro cytotoxic activity against HepG-2 and MCF-7 cancer cell lines compared with doxorubicin and cisplatin as references drugs. Moreover, compounds (2b, 4a, 6a, 7b, 7c and 9a) which exhibited the most potent anticancer activity, were further subjected to EGFRWT enzyme inhibition assay utilizing erlotinib as a standard drug. The compounds 6a, 7b, 7c and 9a which showed the most promising suppression effects were also evaluated as inhibitors against the mutant forms EGFRL858R and EGFRT790M. The 4-aminopyrazolone analogue 9a showed superior anticancer activity against both HepG-2 and MCF-7 cell lines (IC50 = 1.27, 10.80 μM, respectively) and more potent enzymatic inhibition activity against EGFRWT and its mutant forms EGFRL858R and EGFRT790M than that obtained by erlotinib (IC50 = 0.021, 0.053, 0.081 µM, respectively, IC50erlotinib; 0.027, 0.069, 0.550 µM, respectively). Finally, the molecular docking study showed good binding patterns of the most active compounds with the prospective target EGFRWT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号