首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
程方益  陈军 《化学学报》2013,71(4):473-477
可充锂空气电池是当前化学电源研究热点和重点, 近年来取得了重要进展. 简要介绍了该领域在空气电极多孔纳米催化材料的设计与应用方面的最新研究成果, 讨论了碳、贵金属、氧化物三类催化材料的特征及性能, 展望了新型高效氧还原/氧析出双功能阴极纳米催化剂的发展方向.  相似文献   

2.
黄征  池波  蒲健  李箭 《化学进展》2013,(Z1):260-269
以锂为负极,空气为正极的锂-空气二次电池,由于其较高的理论能量密度(5 210 Wh.kg-1)而成为最具发展潜力的新型高能化学电源体系。通过近几年的研究和开发,人们对这一体系的了解不断深入。虽然对其电化学过程中的复杂反应机理尚没有完整系统的理论描述,但是在氧还原催化剂、空气电极材料及电解质材料等方面已开展了一些研究工作。本文综述了锂-空气电池的最新研究进展,对电池的正极材料、电解质和负极材料三个方面的研究进行了介绍,分析了该体系的缺陷及存在的问题,并展望了锂-空气电池的发展方向和前景。  相似文献   

3.
郭丽敏  彭章泉 《分析化学》2013,41(2):307-314
基于锂-氧气反应的锂-空气电池在所有的锂电池体系中具有最大的理论容量和能量密度,认识锂-空气电池中的氧气电极反应对锂-空气电池的研发具有指导意义.本文以金电极/乙腈电解液为模型体系,介绍了锂-空气电池在放电和充电过程中的氧气电极反应机理.电池放电时,氧气还原成超氧自由基,超氧自由基与锂离子结合生成不稳定的超氧化锂;通过歧化反应,超氧化锂生成放电反应最终产物过氧化锂.电池充电时,过氧化锂通过一步两电子直接氧化生成氧气,不经过超氧化锂中间态.在阐述氧气电极反应机理的同时,还对研究氧气反应的各种电化学方法作了介绍.  相似文献   

4.
锂-空气电池是目前已知具有最高能量密度的二次电池,有望成为未来电动汽车的动力电源。由于其能量密度高、环境友好以及成本较低,成为广大科研工作者研究的热点,在过去二十年间与之有关的研究已经在反应机理、电极结构、催化剂及电解液等各方面都取得了很大进展,但受诸多因素限制,其实用化仍然任重道远。本文总结了近几年来非水体系锂-空气电池在反应机理、正极材料、催化剂、电解液以及锂负极等方面的最新研究进展,并在此基础上展望其未来的发展方向。  相似文献   

5.
锂-空气电池性能的影响因素及研究进展   总被引:1,自引:0,他引:1  
顾大明  张传明  顾硕  张音  王余  强亮生 《化学学报》2012,70(20):2115-2122
锂-空气电池理论比能量高达3622 Wh·kg-1(设阴极还原产物为Li2O2), 远超过目前已有的任何电池, 有希望成为新一代的二次电池. 然而, 目前其实用化研究还处于探索阶段, 在其商用之前还有许多工作要做. 对影响锂-空气电池性能的因素以及近期的研究进展进行综述, 总结了阴极材料的组成和微观结构、电解质的种类及组成、阴极疏水膜、电池结构设计、电池的组装及充、放电的工艺过程等对电池比能量、比容量以及循环性能等的影响, 概述了锂-空气电池的表征手段, 并对锂-空气电池的应用前景进行了展望.  相似文献   

6.
高军  武巍  田艳艳  杨勇 《电化学》2012,18(1):14-17
自设计建立锂空气电池实验装置,研究以掺入LiCoO2作为电催化剂的空气正极的电化学性能及其放电前后催化剂结构的变化.循环伏安、XRD及充放电测试等表明,LiCoO2能够很大程度地改善空气电极的放电性能.尤其是在放电前,将掺有LiCoO2的空气正极充电至4.1 V,此时LiCoO2的Co元素呈现较高的价态(Co3+/Co4+),催化作用因此更加显著.  相似文献   

7.
采用多步恒电流沉积技术, 在铜箔上电沉积制备了多孔锂-硅薄膜电极(LSF). 用X射线衍射(XRD)和扫描电镜(SEM)测试手段研究了该电极的结构和表面形貌. 作为锂离子电池负极材料, 电化学测试结果表明锂-硅薄膜电极具有较好的循环稳定性, 通过改变电沉积条件, 可有效调控该电极的嵌脱锂容量及首次循环效率. 譬如, 在0.5 mol·L-1四氯化硅+0.7 mo·L-1高氯酸锂的碳酸丙烯酯电解液中, 首先以-3.82 mA·cm-2的恒定电流密度沉积600 s, 再将电流密度恒定为-1.27 mA·cm-2, 继续电沉积7200 s, 制得锂-硅薄膜电极(LSF-3), 该电极以12.7 μA·cm-2的电流密度预循环2次, 其首次循环库仑效率高达97.1%. 预循环2次后, 电流密度增加到25.5 μA·cm-2, 此时,锂-硅薄膜电极充电质量比容量和面积比容量分别为1410 mAh·g-1及240.6 μAh·cm-2; 50次循环后充电比容量为179 μAh·cm-2 (1049 mAh·g-1), 容量保持率为74.4%. 锂-硅薄膜电极中的活性锂组分可补偿首次循环时不可逆容量损失, 同时薄膜电极中的多孔结构可缓解电极材料的体积效应并改善其循环性能.  相似文献   

8.
以碳纳米管和氧化石墨烯(CNTs/GO)为主体材料, 通过化学还原法制备了CNTs/GO 负载硫的复合正极材料CNTs/GO/S. 扫描电子显微镜(SEM)及透射电子显微镜(TEM)测试表明, CNTs 均匀插层在GO片间, 从而形成三维多孔结构, 有利于电解液的浸润; 活性物质硫均匀地负载在CNTs/GO 表面. 电化学测试表明,CNTs/GO/S复合材料具有高的比容量和良好的循环稳定性: 在1C倍率电流密度下, 复合材料首次放电比容量高达904 mAh·g-1, 经过50圈循环之后, 复合材料的比容量仍保持在578 mAh·g-1.  相似文献   

9.
通过简单刮涂法制备了氧化石墨烯(GO)涂覆改性的聚乙烯(PE)隔膜,并分析研究了GO的氧化程度对隔膜电学性能的影响。采用X射线光电子能谱分析(XPS)、扫描电子显微镜(SEM)、充放电实验、多硫化物透过性测试和交流阻抗等方法对GO及其改性隔膜的结构和性能进行了研究。结果表明:GO改性隔膜可以抑制锂硫电池的"穿梭效应";并且既具有较高的氧化程度,又具有较高的导电性的GO-4改性隔膜的电学性能最优;引入该隔膜的锂硫电池在0.2C条件下,首圈放电比容量为900.0mA·h/g,高于未改性PE隔膜的763.2mA·h/g。  相似文献   

10.
锂硫电池因其理论能量密度高、资源丰富和环境友好等优势,被认为是最有发展前景的下一代电化学储能系统之一。然而,硫的绝缘性、充放电中间产物多硫化物的溶解和扩散、硫的体积膨胀以及锂负极安全性等问题,严重制约着锂硫电池的商业应用。石墨烯因其具有高导电、高柔性等诸多优异特性而被广泛研究,将其用于锂硫电池的正极载体、隔膜涂层和集流体中,以期实现高比能、高稳定性的锂硫电池。本文综述了石墨烯基材料,包括石墨烯、功能化石墨烯、掺杂石墨烯和石墨烯复合物,在锂硫电池中应用的研究进展,并展望了锂硫电池用石墨烯基材料的未来发展方向。  相似文献   

11.
锂-空气二次电池因拥有超高的理论能量密度及巨大的应用潜力, 有望替代锂离子电池成为下一代高性能化学 电源. 高效、稳定电极的制备以及新型锂-空气电池器件的开发是提升电池电化学性能, 促进其应用的关键. 针对以上 问题, 本文对空气正极材料的开发与设计、锂负极的修饰保护以及锂-空气二次电池器件进行了简要介绍, 并对该领域 进行总结展望  相似文献   

12.
黄路露  孙凯玲  刘明瑞  李静  廖世军 《化学进展》2019,31(10):1406-1416
锂空气电池因其极高的理论能量密度和环境友好等优点,有望成为下一代车用动力电源体系。然而,目前锂空气电池尚存在许多的问题和挑战,就正极而言,空气电极活性低的问题已成为制约锂空气电池技术发展最为重要的问题,因此,开发高性能锂空气电池正极催化剂一直以来都是该领域的重要研究课题。碳基催化剂(正极材料)是目前最具吸引力的锂空气电池正极材料之一,近年来得到了广泛的关注和研究。本文总结和介绍了近年来国内外在多孔碳基材料、石墨烯基材料、掺杂碳材料等碳材料作为锂空气电池正极材料方面的进展,包括本课题组在非水系锂空气电池正极材料方面的研究工作,并对碳基正极材料的发展及其在锂空气电池中的应用前景做了展望。  相似文献   

13.
近年来,锂-空气电池由于具有极高的理论容量和对环境友好等优势,作为“终极电池”引起了广大科研工作者和电动汽车公司的极大兴趣和广泛关注. 但目前锂-空气电池还存在着充放电过电位大、循环性能差等局限性,寻找高效的锂-空气电池催化剂成为该领域发展的研究热点之一. 锂-空气电池阴极催化剂主要有贵金属、非贵金属、碳材料以及金属氧化物等,可通过多种方法合成制备,如水热(溶剂热)法、溶胶-凝胶法、共沉淀法、静电纺丝法等等. 其中,静电纺丝技术由于具有制备方法简易、高效且产量高等优点,近年来得到了长足的发展,可以用来大量制备锂-空气电池阴极催化剂,甚至制备自支撑结构的锂-空气电池阴极催化剂材料. 本文综述了静电纺丝技术在锂-空气电池上的应用,主要包括利用静电纺丝技术制备非贵金属催化剂、碳材料催化剂、金属氧化物催化剂和复合催化剂等,以及将制备的催化剂组装成锂-空气电池后表现出的优异的电池性能.  相似文献   

14.
近年来,随着对高性能电池需求的加大,锂空气电池因其超高的理论能量密度成为了研究热点。虽然锂空气电池的发展已取得了一些突破性的进展,但离实际应用差距甚远,仍有很多问题和挑战需要解决。其中,氧电极反应动力学速度缓慢就是一个非常严重的问题。为了促进锂空气电池的发展和应用,国际学术界对改善氧电极动力学速度的催化剂开展了大量的研究工作。本文总结了近年来国内外关于锂空气电池氧电极催化材料的主要研究进展,并对其未来发展作了前景展望。  相似文献   

15.
MnO2/polyaniline/graphene composite as a supercapacitor electrode material was synthesized through an interfacial polymerization approach in the interface of oil/water phase. The as‐synthesized MPG is characterized by infrared spectroscopy, XRD, XPS, SEM and TEM, and its electrochemical performance is measured by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The 3D nanostructure of MPG and loose nanorod structure of polyaniline (PANI) coated with round MnO2 pellets could be clearly observed. The maximum energy density of MPG is 45.4 Wh/kg (at a power density of 67.8 kW/kg) and the highest power density is 229.2 kW/kg (at an energy density of 25.7 Wh/kg). The capacitance retentions after 500 cycles at the scan rate of 5 mV/s for MGP composite and PANI/graphene are 70.4% and 59.1%, respectively, and the capacitance values after 500 cycles are 158.4 F/g and 114.8 F/g, respectively. The improved performance of MPG is due to the 3D nanostructure, loose nanorod structure of PANI and stable support of graphene, which prevent the mechanical deformation effectively during the fast charge/discharge process and facilitate the diffusion of the electrolyte ions into the inner region of active materials. The composite material is very promising for the next generation of high‐performance supercapacitors electrode.  相似文献   

16.
郑杰允  汪锐  李泓 《物理化学学报》2014,30(10):1855-1860
采用固相烧结法制备了纯相Li2MnO3正极材料及靶材,采用脉冲激光沉积(PLD)法在氧气气氛、不同温度下沉积了Li2MnO3薄膜.通过X射线衍射(XRD)和拉曼(Raman)光谱表征了薄膜的晶体结构,采用扫描电镜(SEM)观察薄膜形貌及厚度,利用电化学手段测试了Li2MnO3薄膜作为锂离子电池正极材料性能.结果表明,PLD方法制备的纯相Li2MnO3薄膜随着沉积温度升高薄膜结晶性变好.25℃沉积的薄膜难以可逆充放电,400℃沉积的薄膜具有较高的电化学活性和循环稳定性.相对于粉末材料,400与600℃制备的Li2MnO3薄膜电极平均放电电位随着循环次数的衰减速率明显低于相应的粉体材料.  相似文献   

17.
与其他的锂电池体系相比,锂-空气电池具有最高的理论比能量,被认为有潜力成为终极能量转换和储存装置。目前的锂-空气电池常常使用气体钢瓶提供纯氧气,而非空气中的氧气,这种电池设计极大降低了锂-空气电池的能量密度和实用性。然而,当空气作为锂-空气电池的氧气供给源时,二氧化碳作为杂质会引起严重的副反应,从而降低锂-空气电池的性能。要解决二氧化碳引起的副反应,理解其反应机制至关重要。本文综述了锂-空气电池中有关二氧化碳诱发的化学/电化学反应的研究进展; 总结了可缓解二氧化碳负面效应的有效策略。此外,对二氧化碳选透膜材料和分离技术用于锂-空气电池进行了展望。  相似文献   

18.
以高中化学电化学知识为基础,介绍一种学界预期将对电动汽车储能领域产生革命性影响的可逆电池-锂-空气电池的基础知识,涉及这种电池的基本结构、工作原理、电极反应、研究现状、发展前景等内容。  相似文献   

19.
Zn-air batteries (ZABs) have drawn an attention due to their high energy density, less complicated chemistry, and relatively low cost. Electrocatalyst plays a significant role in the oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) that occurs during the operation. Various valance states of manganese make MnO2 as an attractive electrocatalyst. In the present work, MnO2 nanowires with diameter of 80–90 nm are synthesized via hydrothermal route and tested for electrocatalytic performance in a comparative study of ZABs fabricated using liquid and gel polymer electrolytes (GPEs). The open circuit voltage (OCV) of device lies in the range of 1.35–1.4 V. GPEs based devices show higher stability and exhibited 45 cycles (20 min per cycle) having discharge plateau above 1.06 V at a discharge current density of 1.59 mA cm−2 while liquid electrolyte-based devices show 20 cycles (4 min per cycle at discharge current rate of 3 mA cm−2).  相似文献   

20.
《中国化学》2017,35(8):1294-1298
Amorphous MnO2 has been prepared from the reduction of KMnO4 in ethanol media by a facile one‐step wet chemical route at room temperature. The electrochemical properties of amorphous MnO2 as cathode material in sodium‐ion batteries (SIBs ) are studied by galvanostatic charge/discharge testing. And the structure and morphologies of amorphous MnO2 are investigated by X‐ray diffraction (XRD ), scanning electron microscopy (SEM ), transmission electron microscopy (TEM ) and Raman spectra. The results reveal that as‐synthesized amorphous MnO2 electrode material exhibits a spherical morphology with a diameter between 20 and 60 nm. The first specific discharge capacity of the amorphous MnO2 electrode is 123.2 mAh •g−1 and remains 136.8 mAh •g−1 after 100 cycles at the current rate of 0.1 C. The specific discharge capacity of amorphous MnO2 is maintained at 139.2, 120.4, 89, 68 and 47 mAh •g−1 at the current rate of 0.1 C, 0.2 C, 0.5 C, 1 C and 2 C, respectively. The results indicate that amorphous MnO2 has great potential as a promising cathode material for SIBs .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号