首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
On triplet excitation (λ > 280 nm, acetone), the epoxydiene (E)- 5 undergoes initial cleavage of the C(5)? O bond of the oxirane and subsequent cleavage of the C(6)? C(7) bond leading to the diradical intermediate e which reacts by recombination furnishing the cyclic compounds (E/Z)- 6 , (E/Z)- 7,8 , and 9 . Alternatively, a H -shift leads to the aliphatic methyl-enol ether 10 which undergoes a photochemical [2+2]-cycloaddition to compounds 12 and 13 , the main products on triplet excitation of (E)- 5 . On singlet excitation (λ = 254 nm, MeCN), (E)- 5 undergoes cleavage to the carbene intermediates f and g . The vinyl carbene f reacts with the adjacent double bond furnishing the cyclopropene 14 as the main product. From the carbene intermediate g , the methyl-enol ether 15 arises by carbene insertion into the neighboring C? H bond. Furthermore, the diastereomer of the starting material, the epoxydiene (E)- 16 , and compounds 17A+B are formed via the ylide intermediate h . Finally, the cyclobutene 18 is the product of an electrocyclic reaction of the diene side chain.  相似文献   

2.
On singlet excitation (λ = 254 nm), the epoxydiene (E)- 3 underwent (E)/(Z)-isomerization, electrocyclic ring closure of the diene side chain leading to the cyclobutenes 4A + B , and rearrangement to the cyclohexanones 5A + B . Compounds 5A + B were presumably formed in a series of processes including a 1,3-acyl shift of the homoconjugated ketone 8 , arising from (Z)- 3 by a 1,5-H-shift accompanied by cleavage of the C,O-bond of the oxirane.  相似文献   

3.
Triplet sensitization of the 7-hydroxy-5,6-epoxy-1,3-diene 10 causes cleavage of the C(5),0 epoxide bond followed by the formation of the three isomers 1113 or induces scission of the C(6), C(7) bond followed by the formation of the aldehyde 14 and the bicyclo[3.2.0]heptanols 15 and 16. However, irradiation of the corresponding acetate 18 gives only C(5),0 epoxide bond scission (18 → f) followed by the cyclization process f → 19, the 1,2-Me shifts f → 20, 21 and the γ-H abstraction f → g leading to the cyclopropane formation g → 22.  相似文献   

4.
On triplet excitation (λ > 280 nm, acetone), the epoxydiene (E)- 2 undergoes (E)/(Z)-isomerization exclusively, leading to the conformers (Z)- 2A and (Z)- 2B . On singlet excitation (λ = 254 nm), apart from (Z)- 2A + B , the cyclobutenes 3A + B are formed. However, the epoxydiene (E)- 2 does not undergo reactions leading to carbene and C,O-bond cleavage products, which are normally observed on singlet and triplet excitation, respectively, of the epoxydienes of the ionone series.  相似文献   

5.
1n, π*-Excitation of the γ,δ-epoxy-enone (E)- 3 leads exclusively to the conformers (Z)- 3A + B . On 1π, π*-excitation of (E)- 3 , in addition to (Z)- 3A + B , products 6–9 arising from a carbene intermediate e are formed. However, products of an isomerization via C(γ), O-bond cleavage of the oxirane were not formed on either mode of excitation. On thermolysis, at 80° the conformer (Z)- 3A is transformed into (Z)- 3B , which on photolysis returns to (Z)- 3A and (E) -3 . At 160°, however, (Z) -3B rearranges to the isomers 6, 10 and 11 .  相似文献   

6.
The preparation and photolyses of the diepoxyenones (E)- 8 and (E)- 9 as well as the diepoxydiene (E)- 10 are described. On 1π,π*-excitation (λ = 254 nm), the diastereoisomeric diepoxyenones (E)- 8 and (E)- 9 undergo isomerization via the ylide intermediate f and the carbene intermediate g leading to the primary photoproducts 17A and 18–21 (Scheme 8). On 1n, π*-excitation (λ > 347 nm), (E)- 8 shows behaviour typical of epoxyenones undergoing C(γ), O-bond cleavage of the oxirane and isomerization to compounds 22 , (E/Z)- 23 and (E)- 24 (Scheme 10). On singlet excitation, the diepoxydiene (E)- 10 , is cleaved to the carbonyl ylide j and the carbenes 1 and m (Scheme 11). The carbonyl ylide j fragments via the dipolar intermediate k to the acetylenic dienone (E)- 31 . The carbene 1 , showing behaviour typical of vinyl carbenes, furnishes the cyclopropene 30 . The alternative carbene m , however, undergoes an insertion reaction into the neighboring oxirane C,C-bond leading to the proposed but not isolated oxetene 43 , which is further transformed to the products 33A _ B by an intramolecular cycloaddition.  相似文献   

7.
On 1n,π*-excitation(λ > 347 nm), the diastereomeric methanoepoxyenones (E)- 6 undergo isomerization via C,O-cleavage of the oxirane leading to diastereomeric photoproducts ((E)- 5 →(E/Z)- 13 and 14 ; (E)- 6 →(E/Z)- 16 and 17 ). On 1π,π*-excitation (λ = 254 nm) of either (E)- 5 ) or (E- 6 the photoproducts 9, 10 and 11 are formed. By laser flash photolysis (λ = 265 nm) the ylide intermediate 3 was detected, with a lifetime of 10 μs in MeCN at ambient temperature. Stern-Volmer analysis of the ylide quenching by MeOH disclosed that compounds 9 and 10 , but not 11 , arise from the ylide intermediate e .  相似文献   

8.
On n,π*- as well as on π,π*-excitation, the 4,5-epoxy-α-ionones (E)- 1 , (E)- 2 , and (E)- 3 undergo (E)/(Z)-isomerization and subsequent γ-H-abstraction leading to the corresponding 4-hydroxy-β-ionones (E/Z)- 9 , (E/Z)- 13 , and (E/Z)- 17 as primary photoproducts. On photolysis of (E)- 3 , as an additional primary photoproduct, the β,γ-unsaturated σ,?-epoxy ketone 18 was obtained. The other isolated compounds, namely the 2H-pyrans 10A + B and 14A + B as well as the retro γ-ionones 11 and 15A + B , represent known types of products, which are derived from the 4-hydroxy-β-ionones (E/Z)- 9 and (E/Z)- 13 , respectively.  相似文献   

9.
On π,π*-excitation of the epoxyenone (E)- 1 (λ = 254 nm, MeCN), in addition to the previously isolated compounds 2 – 9 , the new products 10 – 12 , derived from the ylide intermediate c were isolated. Further evidence for the ylide c was obtained by the rapid racemization of the optically active epoxyenone (?)-(E)- 1 .  相似文献   

10.
The 2-cyclohexene-imines 2b–2d and the hexahydroquinolines 5a, b are synthesized. n,π*-Excitation of these α,β-unsaturated imines leads to (E/Z) isomerization for compounds 2 while compounds 5 are unreactive. No cyclobutanes are formed from 2 or 5 under these conditions in the presence of olefins, and only 2d adds to 2,3-dimethyl-2-butene via the C?N bond to give an azetidine. On π,π* excitation 2 and 5 rearrange to the corresponding β,γ-unsaturated imines 8 and 9 with low efficiency. It is concluded that the failure of such imines to undergo [2+2]-photocycloadditions with olefins is not mainly due to radiationless decay via (E/Z) isomerization.  相似文献   

11.
Bogdanova A  Popik VV 《Organic letters》2001,3(12):1885-1888
[see reaction]. The UV irradiation of dibenzonorcaradienes bearing an acyl or alkoxycarbonyl substituent in the 7-position results in formation of substituted phenanthrenes, as well as cis-trans isomerization of the starting material. This reaction apparently proceeds via intermediate formation of a short-lived (tau = 1-20 ns) 1,3-diradical, which is produced by photochemical cleavage of one cyclopropane bond, while no evidence of alpha-carbonylcarbene formation was found.  相似文献   

12.
On singlet excitation (λ = 254 nm, THF, pentane or hexane), the diastereoisomeric methano-epoxydienes (E)- 6 and (E)- 7 undergo interconversion and yield the products 8 – 11 . The main process is the cleavage of the oxirane ring to the vinyl carbene intermediate e which undergoes addition to the adjacent double bond furnishing the cyclopropene 8 . The alternative carbene intermediate f is evidenced by the formation of the cyclobutene 10 . For the fragmentation leading to 11 , the carbene f as well as the dipolar species h are considered as possible intermediates. On triplet sensitization (acetone, λ > 280 nm), (E)- 7 shows behavior typical of epoxydienes, undergoing fission of the C? O bond of the oxirane ring and isomerization to the compounds 13 , 14 and (E/Z)- 15 .  相似文献   

13.
The synthesis and photolysis of the spirocyclobutanones 4–7 incorporating a cyclohexa-, cyclohepta- and cyclooctadiene moiety, respectively, is described. On triplet excitation, these compounds undergo isomerization via a 1,2-acyl shift involving one or both double bonds of the diene system. The presence of a gem-dimethyl group as in 1 , 4 and 7 dramatically changes the photoproduct distribution, since only these substrates leads to the products 3, 29 and 34 resulting from vinylogous ring closure (Scheme 5). Those substrates without methyl substitution ( 5 and 6 ) give only products of a rearrangement involving one double bond.  相似文献   

14.
15.
The wavelength dependence of the photolysis of 7-methyl-β-ionone ((E)- 1 ) was investigated. Irradiation of (E)- 1 with light of λ > 347 nm leads primarily to (E/Z)-isomerization followed by transformation to the tricyclic enol ether 3 as the only secondary photoproduct. On photolysis of (E)- 1 with light of shorter wavelength (λ > 280 nm or λ = 254 nm), however, a series of other products was formed (via a) photocyclization of the dienone chromophore (→ 5 ), (b) photo-enolization (→ 8 ), and (c) a 1,5-sigmatropic H-shift (→ (E/Z)- 7 ). For the structure elucidation of the new products, 7-[13C]methyl-β-ionone ((E)-[7-methyl-13C]- 1 ) was prepared and irradiated furnishing the corresponding 13C-labelled photoproducts.  相似文献   

16.
The title compound 4 was prepared in 54% overall yield from eucarvone ( 5 ). On triplet sensitization 4 gives two products resulting from a 1,2-acyl shift ( 8 and 9 ), whereas singlet excitation of 4 causes decarbonylation and ketene elimination ( 4 → 10 and 11 ).  相似文献   

17.
CeCl3·7H2O-NaI effectively catalyzed intramolecular cyclization of cyclic 7-hydroxy-1,3-dienes, yielding hexahydrobenzofurans in diastereoselective fashion. This cyclization has been applied to synthesize tetrahydrofurans from acyclic 7-hydroxy-1,3-dienes.  相似文献   

18.
The title compounds (E/Z)- 7 were prepared in 66% overall yield by reaction of β-ionone ((E)-( 1 ) with lithium dimethylcuprate, trapping of the intermediate enolate with benzeneselenenyl bromide and oxidation with H2O2. Analogously, (E/Z)-7-methyl-α-inone ((E/Z)- 12 ) was obtained in 65% yield from α-ionone ((E)- 11 ). 1n, π*- Excitation (λ > 347 nm, pentane) of (E)-7 causes rapid (E/Z)-isomerization and subsequent reaction of (Z)- 7 to 15 (66%). The formation of 15 is explained by twisting of the dienone chromophore due to repulsive interaction of the 7-CH3-group with the CH3-groups of the cyclohexene ring. On the other hand, irradiation λ > 347 nm, Et2O) of (E)- 7 in the presence of acid leads to (Z)- 7 (5%) and to the novel compound 16 (88%).  相似文献   

19.
The reaction of 4-acetoxy-2-azetidinones with organoindium reagents generated in situ from indium and 1,4-dibromo-2-butyne in the presence of LiCl in DMF selectively produced 2-azetidinones which contain a 1,3-butadienyl-2-yl group at the C4-position in good yields. The Diels-Alder reaction of 4-[(1-methylene)prop-2-enyl]-2-azetidinones with a variety of dienophiles provided 2-azetidinones with valuable functional-group-substituted six-membered rings at the C4-position in good yields.  相似文献   

20.
The syntheses, photolyses, and thermolyses of the α,β-unsaturated silyl ketones (E/Z)-7, (E)- 8 , and (E)- 9 are described. On n,π*-excitation (λ > 347 mm), the aforementioned compounds undergo (E/Z)-isomerization followed by γ-H abstraction. The intermediate enols are trapped intermolecularly by siloxycarbenes leading to the dimeric acetals 27A + B, 30A + B , and 31A + B . In addition, the acylsilanes (E/Z)- 7 undergo photoisomerization by δ-H abstraction furnishing the acylsilanes 29A + B . Flash vacuum thermolyses (FVT) of (E/Z)- 7 , (E/Z)- 8 , and (E)- 9 give rise to intramolecular reactions of the siloxycarbene intermediates. Thus, FVT (520°) of (E)- and (Z)- 7 selectively leads to the enol silyl ethers 32 and (E)- 33 , respectively, arising from carbene insertion into an allylic C–-H bond. FVT of (E/Z)- 8 (560°) and (E)- 9 (600°) affords the trienol silyl ethers 34A + B and the cyclic silyl ethers 37A + B , respectively, which are formed by CH insertion of the siloxycarbenes. As further products of (E)- 8 and (E)- 9 , the bicyclic enol ethers 35 and 36 are formed, presumably via siloxycarbene addition to the cyclohexene C?C bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号