首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background: Growth factors and cytokines responsible for the regenerative potential of the dental pulp mesenchymal stem cell secretome (DPMSC-S) are implicated in oral carcinogenesis. The impact and effects of these secretory factors on cancer cells must be understood in order to ensure their safe application in cancer patients. Objective: We aimed to quantify the growth factors and cytokines in DPMSC-S and assess their effect on oral cancer cell proliferation. Materials and methods: DPMSCs were isolated from patients with healthy teeth (n = 5) that were indicated for extraction for orthodontic reasons. The cells were characterized using flow cytometry and conditioned medium (DPMSC-CM) was prepared. DPMSC-CM was subjected to a bead-based array to quantify the growth factors and cytokines that may affect oral carcinogenesis. The effect of DPMSC-CM (20%, 50%, 100%) on the proliferation of oral cancer cells (AW123516) was evaluated using a Ki-67-based assay at 48 h. AW13516 cultured in the standard growth medium acted as the control. Results: VEGF, HCF, Ang-2, TGF-α, EPO, SCF, FGF, and PDGF-BB were the growth factors with the highest levels in the DPMSC-CM. The highest measured pro-inflammatory cytokine was TNF-α, followed by CXCL8. The most prevalent anti-inflammatory cytokine in the DPMSC-CM was IL-10, followed by TGF-β1 and IL-4. Concentrations of 50% and 100% DPMSC-CM inhibited Ki-67 expression in AW13516, although the effect was non-significant. Moreover, 20% DPMSC-CM significantly increased Ki-67 expression compared to the control. Conclusions: The increased Ki-67 expression of oral cancer cells in response to 20% DPMSC-CM indicates the potential for cancer progression. Further research is needed to identify their effects on other carcinogenic properties, including apoptosis, stemness, migration, invasion, adhesion, and therapeutic resistance.  相似文献   

2.
Andrographolide is a labdane diterpenoid herb, which is isolated from the leaves of Andrographis paniculata, and widely used for its potential medical properties. However, there are no reports on the effects of andrographolide on the human suprapatellar fat pad of osteoarthritis patients. In the present study, our goal was to evaluate the innovative effects of andrographolide on viability and Tri-lineage differentiation of human mesenchymal stem cells from suprapatellar fat pad tissues. The results revealed that andrographolide had no cytotoxic effects when the concentration was less than 12.5 µM. Interestingly, andrographolide had significantly enhanced, dose dependent, osteogenesis and chondrogenesis as evidenced by a significantly intensified stain for Alizarin Red S, Toluidine Blue and Alcian Blue. Moreover, andrographolide can upregulate the expression of genes related to osteogenic and chondrogenic differentiation, including Runx2, OPN, Sox9, and Aggrecan in mesenchymal stem cells from human suprapatellar fat pad tissues. In contrast, andrographolide suppressed adipogenic differentiation as evidenced by significantly diminished Oil Red O staining and expression levels for adipogenic-specific genes for PPAR-γ2 and LPL. These findings confirm that andrographolide can specifically enhance osteogenesis and chondrogenesis of mesenchymal stem cells from human suprapatellar fat pad tissues. It has potential as a therapeutic agent derived from natural sources for regenerative medicine.  相似文献   

3.
Biomimetic polymer network systems with tailorable properties based on biopolymers represent a class of degradable hydrogels that provides sequences for protein adsorption and cell adhesion. Such materials show potential for in vitro MSC proliferation as well as in vivo applications and were obtained by crosslinking different concentrations of gelatin using varying amounts of ethyl lysine diisocyanate in the presence of a surfactant in pH 7.4 PBS solution. Material extracts, which were tested for cytotoxic effects using L929 mouse fibroblasts, were non‐toxic. The hydrogels were seeded with human bone marrow‐derived MSCs and supported viable MSCs for the incubation time of 9 d. Preadsorption of fibronectin on materials improved this biofunctionality.

  相似文献   


4.
间充质干细胞(MSCs)具有高度自我更新能力、多分化潜能、体外易分离和培养的特性,是细胞治疗和组织工程重要的种子细胞来源,但如何大规模地获得具有可再生活性的MSCs一直是限制其临床应用的关键因素,近几年发展起来的贴壁动物细胞动态培养技术为MSCs的大规模体外扩增提供了一条重要的途径。本综述结合动物细胞扩增载体的发展现状,主要介绍了用于间充质干细胞三维动态培养的明胶载体、海藻酸盐载体、壳聚糖载体和其他多糖载体等常规载体及其表面修饰和改性方法,并进一步介绍了以非酶解途径回收扩 增细胞的新型干细胞载体的研究进展。随着新型载体材料的涌现以及人们对干细胞生长和扩增特点的了解,采用三维动态培养技术安全而有效地大规模体外扩增MSCs的必要性将得到进一步的确认。  相似文献   

5.
干细胞迁移机理的近场扫描光学显微术研究   总被引:1,自引:0,他引:1  
将内皮细胞生长因子(VEGF)置于甲基纤维素碟中形成VEGF的浓度梯度分布,并将人脐带间充质干细胞(Mesenchymal stem cells,MSCs)于此浓度梯度中培养,观察VEGF能否诱导MSCs定向迁移。应用近场扫描光学显微术(Near-field scanning optical microscopy,NSOM)同时获取了VEGF诱导前后的MSCs的形貌和光学信息。结果表明,近场光学图观测到形貌图上所没有的黑色斑点,分析认为这些黑斑为细胞的黏着斑。近场光学图显示经过VEGF诱导后细胞的黏着斑数量明显增加。同时,对诱导前后干细胞的骨架蛋白进行免疫荧光标记并用共聚焦显微镜进行观察,结果表明细胞骨架由诱导前的无序状态转变为诱导后的有序状态,说明诱导后的干细胞处于迁移状态。光学超微结构图则显示了诱导后干细胞表面的光学细节比诱导前细胞大量增加,出现了大量直径约200 nm的光斑,这是由于细胞表面大量分泌黏附分子等蛋白分子引起的,这些结果为VEGF能够诱导MSCs进行定向迁移提供了实验依据和可视化证明。也表明NSOM不但能提供高分辨的光学分辨率,还可提供生物细胞精细结构的更深层次的光学信息。  相似文献   

6.
7.
Injury of the cornea is a complex biological process. Regeneration of the corneal stroma can be facilitated by the presence of mesenchymal stromal cells (MSCs) and application of tissue equivalents. A new tissue-engineering strategy for corneal stroma regeneration is presented using cellularized 3D bioprinted hydrogel constructs implanted into organ cultured porcine corneas using femtosecond laser-assisted intrastromal keratoplasty. The ex vivo cultured, MSC-loaded 3D bioprinted structures remain intact, support cell survival, and contain de novo synthesized extracellular matrix components and migrating cells throughout the observation period. At day 14 postimplantation, the cellularized tissue equivalents contain few or no cells, as demonstrated by optical coherence tomography imaging and immunofluorescent staining. This study successfully combines a laboratory-based method with modern, patient-care practice to produce a cell-laden tissue equivalent for corneal implantation. Optimal bioink composition and cellularization of tissue equivalents are essential in fine-tuning a method to promote the current technique as a future treatment modality.  相似文献   

8.
Electrical stimulation (ES) within a conductive scaffold is potentially beneficial in encouraging the differentiation of stem cells toward a neuronal phenotype. To improve stem cell-based regenerative therapies, it is essential to use electroconductive scaffolds with appropriate stiffnesses to regulate the amount and location of ES delivery. Herein, biodegradable electroconductive substrates with different stiffnesses are fabricated from chitosan-grafted-polyaniline (CS-g-PANI) copolymers. Human mesenchymal stem cells (hMSCs) cultured on soft conductive scaffolds show a morphological change with significant filopodial elongation after electrically stimulated culture along with upregulation of neuronal markers and downregulation of glial markers. Compared to stiff conductive scaffolds and non-conductive CS scaffolds, soft conductive CS-g-PANI scaffolds promote increased expression of microtubule-associated protein 2 (MAP2) and neurofilament heavy chain (NF-H) after application of ES. At the same time, there is a decrease in the expression of the glial markers glial fibrillary acidic protein (GFAP) and vimentin after ES. Furthermore, the elevation of intracellular calcium [Ca2+] during spontaneous, cell-generated Ca2+ transients further suggests that electric field stimulation of hMSCs cultured on conductive substrates can promote a neural-like phenotype. The findings suggest that the combination of the soft conductive CS-g-PANI substrate and ES is a promising new tool for enhancing neuronal tissue engineering outcomes.  相似文献   

9.
Mesenchymal stem cells (MSC), also called marrow stromal cells, are adult cells that have attracted interest for their potential uses in therapeutic applications. There is a pressing need for scalable culture systems due to the large number of cells needed for clinical treatments. Here, a tailorable thin polymer coating—poly(poly(ethylene glycol) methyl ether methacrylate‐ran‐vinyl dimethyl azlactone‐ran‐glycidyl methacrylate) [P(PEGMEMA‐r‐VDM‐r‐GMA); PVG]—to the surface of commercially available polystyrene and glass microcarriers to create chemically defined surfaces for large‐scale cell expansion is applied. These chemically defined microcarriers create a reproducible surface that does not rely on the adsorption of xenogenic serum proteins to mediate cell adhesion. Specifically, this coating method anchors PVG copolymer through ring opening nucleophilic attack by amine residues on poly‐l ‐lysine that is pre‐adsorbed to the surface of microcarriers. Importantly, this anchoring reaction preserves the monomer VDM reactivity for subsequent functionalization with an integrin‐specific Arg‐Gly‐Asp peptide to enable cell adhesion and expansion via a one‐step reaction in aqueous media. MSCs cultured on PVG‐coated microcarriers achieve sixfold expansion—similar to the expansion achieved on PS microcarriers—and retain their ability to differentiate after harvesting.  相似文献   

10.
11.
利用碱性磷酸酶(ALP)染色和钙结节(Vonkossa)染色的方法对诱导21 d的淫羊霍苷诱导人脐带间充质干细胞进行鉴定;应用原子力显微镜(AFM)观察淫羊霍苷的形貌和人脐带间充质干细胞诱导0、5、10、15、21 d后的细胞形貌。结果表明,经成骨诱导分化21 d后,ALP染色呈强阳性,Vonkossa染色可见明显钙结节。AFM分析表明,淫羊霍苷在盖玻片上呈分散状分布,在细胞表面上聚集并呈微米域分布。实验发现,由于吸附在细胞表面时,被细胞膜分子包裹,更有利于在细胞表面的吸附,进入细胞内部,细胞表面的淫羊霍苷颗粒较在盖玻片上时增大,由淫羊霍苷颗粒进入细胞后在细胞表面留下一些小孔,可知其通过进入细胞内部诱导成骨分化。分化后,细胞表面有小突触,是由成骨分化后细胞内形成钙结节造成。  相似文献   

12.
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive disease with a 5-year survival rate of <8%. Therefore, finding new treatment strategies against PDAC cells is an imperative issue. Betulinic acid (BA), a plant-derived natural compound, has shown great potential to combat cancer owing to its versatile physiological functions. In this study, we observed the impacts of BA on the cell viability and migratory ability of PDAC cell lines, and screened differentially expressed proteins (DEPs) by an LC-MS/MS-based proteomics analysis. Our results showed that BA significantly inhibited the viability and migratory ability of PDAC cells under a relatively low dosage without affecting normal pancreatic cells. Moreover, a functional analysis revealed that BA-induced downregulation of protein clusters that participate in mitochondrial complex 1 activity and oxidative phosphorylation, which was related to decreased expressions of RNA polymerase mitochondrial (POLRMT) and translational activator of cytochrome c oxidase (TACO1), suggesting that the influence on mitochondrial function explains the effect of BA on PDAC cell growth and migration. In addition, BA also dramatically increased Apolipoprotein A1 (APOA1) expression and decreased NLR family CARD domain-containing protein 4 (NLRC4) expression, which may be involved in the dampening of PDAC migration. Notably, altered expression patterns of APOA1 and NLRC4 indicated a favorable clinical prognosis of PDAC. Based on these findings, we identified potential proteins and pathways regulated by BA from a proteomics perspective, which provides a therapeutic window for PDAC.  相似文献   

13.
In cartilage regeneration, the biomimetic functionalization of hydrogels with growth factors is a promising approach to improve the in vivo performance and furthermore the clinical potential of these materials. In order to achieve this without compromising network properties, multifunctional linear poly(glycidol) acrylate (PG‐Acr) is synthesized and utilized as crosslinker for hydrogel formation with thiol‐functionalized hyaluronic acid via Michael‐type addition. As proof‐of‐principle for a bioactivation, transforming growth factor‐beta 1 (TGF‐β1) is covalently bound to PG‐Acr via Traut's reagent which does not compromise the hydrogel gelation and swelling behavior. Human mesenchymal stromal cells (MSCs) embedded within these bioactive hydrogels show a distinct dose‐dependent chondrogenesis. Covalent incorporation of TGF‐β1 significantly enhances the chondrogenic differentiation of MSCs compared to hydrogels with supplemented noncovalently bound TGF‐β1. The observed chondrogenic response is similar to standard cell culture with TGF‐β1 addition with each medium change. In general, multifunctional PG‐Acr offers the opportunity to introduce a range of biomimetic modifications (peptides, growth factors) into hydrogels and, thus, appears as an attractive potential material for various applications in regenerative medicine.  相似文献   

14.
从蛋白质组学角度分析大鼠骨髓间充质干细胞(MSCs)体外定向分化为心肌细胞过程中蛋白表达情况, 采用二维电泳分离蛋白, 用PDQuest软件分析蛋白表达差异, 并采用质谱(MALDI-TOF-MS)进行鉴定, 得到了54个蛋白点, 对蛋白的生物功能分析表明, 部分蛋白通过不同的信号途径参与了MSCs的分化过程.  相似文献   

15.
The in vitro viability, osteogenic differentiation, and mineralization of four different equine mesenchymal stem cells (MSCs) from bone marrow, periosteum, muscle, and adipose tissue are compared, when they are cultured with different collagen‐based scaffolds or with fibrin glue. The results indicate that bone marrow cells are the best source of MSCs for osteogenic differentiation, and that an electrochemically aggregated collagen gives the highest cell viability and best osteogenic differentiation among the four kinds of scaffolds studied.

  相似文献   


16.
The mechanical and biological properties of silicate‐crosslinked PEO nanocomposites are studied. A strong correlation is observed between silicate concentration and mechanical properties. In vitro cell culture studies reveal that an increase in silicate concentration enhances the attachment and proliferation of human mesenchymal stem cells significantly. An upregulation in the expression of osteocalcin on nanocomposites compared to the tissue culture polystyrene control is observed. Together, these results suggest that silicate‐based nanocomposites are bioactive and have the potential to be used in a range of biotechnological and biomedical applications such as injectable matrices, biomedical coatings, drug delivery, and regenerative medicine.

  相似文献   


17.
18.
19.
The effect of substrate‐mediated signals on osteogenic differentiation of hMSCs is studied using a synthetic bone‐like material comprising both organic and inorganic components that supports adhesion, spreading, and proliferation of hMSCs. hMSCs undergo osteogenic differentiation even in the absence of osteogenesis‐inducing supplements. They exhibit higher expressions of Runx2, BSP, and OCN compared to their matrix‐rigidity‐matched, non‐mineralized hydrogel counterparts. The mineralized‐hydrogel‐assisted osteogenic differentiation of hMSCs could be attributed to their exposure to high local concentrations of calcium and phosphate ions in conjunction with chemical and topological cues arising from the hydrogel‐bound calcium phosphate mineral layer.

  相似文献   


20.
We fabricated composite fibrous scaffolds from blends of poly(lactide‐co‐glycolide) (PLGA) and nano‐sized hydroxyapatite (HA) via electrospinning. SEM‐EDX and AFM analysis demonstrated that HA was homogeneously dispersed in the nanofibers, and the roughness increased along with the amount of incorporated HA. When hMSCs were cultured on these PLGA/HA composite nanofibers, we found that incorporation of HA on the nanofibers did not affect cell viability whereas increased ALP activity and expression of osteogenic genes as well as the calcium mineralization of hMSCs. Our results indicate that the composite nanofibers can be offered as a potential bone regenerative biomaterial for stem cell based therapies.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号