首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A high degree of deactivation of glass and fused-silica capillary column walls is attainable by means of high temperature silylation (HTS) with or without a preceding leaching process. HTS with a phenyl containing disilazane, diphenyltetramethyldisilazane (DPTMDS), and polydimethylsiloxane (PDMS) are studied on Cab-O-Sil, a fumed silica, as a model substrate. Using 29Si CP-MAS NMR, it was shown that no dimethylsiloxane chains were formed upon silylation with DPTMDS under different conditions of humidity and stoichiometry at 377°C. With DPTMDS deactivation it is possible that amino trisiloxy silane groups are formed, these groups add extra activity to the surface. Silylation with a PDMS, OV 101, at various temperatures between 300°–420°C did show that dimethylsiloxane chains were bonded at the surface. Using the 29Si CP-MAS NMR technique with variable contact times to reveal siloxy group mobility, the degradation of dimethylsiloxane chains at the surface was studied. PDMS degradation at an optimal temperature gives a more effective diminuation of the silane activity caused by chemical reaction with the silanol groups and the effective screening of the remaining silanol groups with anchored polydimethylsiloxane chains and small cyclodimethylsiloxane ring structures at the surface.  相似文献   

2.
To investigate the reaction mechanism of radiation-induced polymerization of styrene adsorbed on silica gel, the effect of pretreatment temperature of silica gel was studied. Preheating of silica gel was carried out at 200, 500, and 800°C. The number of silanol groups of silica gel surface decreased as preheating temperature increased. The rate of polymerization on the silica gel preheated at 500°C was faster than that at 200°C, but the polymerization rate on the silica gel preheated at 800°C was the lowest. These results suggest that rate of polymerization on the silica gel is affected by the conditions of silica gel surface such as the number of silanol groups and the pore size. At the same monomer conversion, percent grafting decreased as preheating temperature of silica gel increased. The GPC spectra of both graft polymers and homopolymers have two peaks at all preheating temperatures. The monomer conversion of low molecular weight peaks of graft polymers decreased as preheating temperature of silica gel increased. This result suggests that there is a probability that the grafting sites of low molecular weight peaks of graft polymers somehow interact with silanol groups.  相似文献   

3.
Summary A microporous silica support, LiChrosorb Si-100, has been silanized with octyldimethylchlorosilane and octylmethyldichlorosilane. The repeatability of the silanization procedure was within about 2%. In general, these nonpolar modified silicas still contain too many residual hydroxyl groups, causing bifunctional behaviour of the adsorbent. A partial condensation of surface silanol groups at a drying temperature >200°C, prior to the chemical modification, decreases the residual hydroxyl group content. With respect to this residual polarity, monochlorosilanes appear to be effective. The concentration of bonded octyl chains remains virtually constant up to a drying temperature of 400°C. Owing to silanization, the specific surface decreases by 15–20%, whereas the pore volume decreases by 25%.  相似文献   

4.
The effect of deactivating a fused silica surface by silylation with 1,1,3,3-tetraphenyl-1,3-dimethylilazane (TPDMDS), triphenylsilylamine (TPSA), and octamethylcyclotetrasiloxane (D4) and by polydimethylsiloxane degradation (PSD) is studied. Rehydrated, dried, and deactivated Cab-O-Sil M5 samples are used as model materials for 29Si CP-MAS NMR analysis. At about 350 °C, TPDMDS yelds mainly diphenylmethylsiloxysilane, dimethyldisiloxysilane, and triphenylsiloxysilane groups. TPSA yields phenyltrisiloxysilane, diphenyldisiloxysilane, and triphenylsiloxysilane groups. At 400°C, the products formed initially are eventually replaced by methyltrisiloxysilane or phenyltrisiloxysilane groups, while a substantial number of silanol groups still remains. The possible consequences for wettability are discussed. D4 reacts with Cab-O-Sil even at 200°C, but a large number of silanol groups remains. This number decreases gradually at higher temperatures and becomes negligible above 400°C. The formation of methyltrisiloxysilane groups, which starts at 425°C, is predominant at 490°C.  相似文献   

5.
In this report we describe the coating of delonized glass surfaces with commercially available CH3O-terminated diphenyl-dimethylpolysiloxane (PS-090). This new type of reactive, high temperature stable stationary phases withstands temperatures up to 430°C. As already reported for OH-terminated polymers, the underlying stabilization process is a condensation of methoxy groups of the phase with surface silanol groups arising from high temperature silylation. The good selectivity of this medium polar coating for substrates bearing π-electron systems is demonstrated by the separation of various metalloporphyrins.  相似文献   

6.
The effect of temperature, water content, and the type of reagent on the silylation of fused silica capillaries was studied by 29Si and 13C CP-MAS NMR. Fumed silica (Cab-O-Sil M5), which is essentially a highly dispersed vitreous quartz with a surface comparable to that of fused silica capillary columns, was selected as a model material. Hexamethyldisilazane (HMDS) and 1,2-diphenyl-1,1,3,3-tetraphenyldisilazane (DPTMDS), which were used as silylation reagents, yielded trimethyl- and dimethylphenylsilyl surface groups respectively at lower temperatures (< 350°C and <250°C respectively). At higher temperatures, increasingly more dimethylsilyl groups are formed, with the silicon bound to two oxygen atoms. This process occurs for DPTMDS at a considerably lower temperature than for HMDS. The formation of silyl groups on the surface and the disappearance of hydroxyl groups are followed independently. The 13C NMR and GC-MS of the reaction products showed that with DPTMDS, the formation of two Si-O-Si links is accompanied by a loss of phenyl groups rather than of methyl groups. After the Cab-O-Sil had been dried over P2O5, the formation of these double links occurred for HMDS only at temperatures above 460°C and for DPTMDS at 400°C. Thus we concluded that water supplies oxygen atoms for double Si-O-Si links (possibly crosslinks) necessary for efficient deactivation. This may explain the less successful silanization of fused silica capillaries because their water content is lower than that of glass capillaries.  相似文献   

7.
In this article I describe two of our discoveries. The first is the preparation of a transparent solid material composed of an organic polymer and silica gel. A novel material called a “hybrid” has successfully been prepared by the sol-gel reaction of ethyl orthosilicate in the presence of an organic polymer consisting of repeating units having an N-alkylamide group. The molecular-level dispersion of the organic polymer in the framework of silica gel has been established, which is due to the hydrogen-bond interaction between the organic polymer and silanol group of silica gel. The second discovery is the preparation of porous silica gel, which has been achieved by calcination of the organic polymer-silica gel hybrid at 600°C. Pore sizes ranging from 10 to 20 Å have been attained. A method of controlling pore size has been proposed.  相似文献   

8.
Flexible aerogel-fiber composites were prepared by silylation and ambient drying of colloidal silica and tetraethylorthosilicate (TEOS)-based sol. After immersing glass fiber matrices into silica sol with colloid-based, colloid/TEOS-based, and TEOS-based silica sol, it was surface-modified in a trimethylchlorosilane/n-hexane solution and heat-treated at 230 °C in ambient atmosphere. Surface silylation of silica aerogel synthesized from colloid and TEOS-based silica sols showed different behaviors. For colloid silica gel, it was comprised of small sized mesopores because colloid-based silica gel has dense networks through great degrees of hydrolysis and condensation. On the contrary, TEOS-based aerogel was consisted of relatively large-sized pores because of comparatively lesser degree of hydrolysis and condensation. Through this study, we can know that the pore structures of silica aerogel could be controlled by choosing colloid or TEOS-based precursor and surface silylation reaction.  相似文献   

9.
The monodisperse superficially porous core-shell silica microspheres (CSSMs) with controllable shell thickness and pore size were synthesized by an improved polymerization-induced colloid aggregation (PICA) approach for fast separation of small solutes and proteins.  相似文献   

10.
Flow microcalorimetry was used to study the adsorption of butanol on controlled pore glass (CPG) surfaces. Heats of adsorption and some thermodynamic data are reported for the adsorption process at the original, hydroxylated and hydrated surfaces and for those heat treated at temperatures of 450. 650 and 900°C. It was found that the molar free energy of adsorption is the same, 17 kJ mole?1 for all the surfaces studied. The molar enthalpy and entropy of adsorption are indicative of steric effects caused by water molecules. For surfaces heat treated to 650°C monolayer coverage of butanol is close to 5 molecules per nm2, the same figure as reported for the total number of vicinal and isolated silanol groups on the surface of silica.  相似文献   

11.
有机改性二氧化硅及其负载钴催化剂的费托合成反应性能   总被引:3,自引:0,他引:3  
石利红  李德宝  侯博  孙予罕 《催化学报》2007,28(11):999-1002
利用硅烷化作用分别制得了甲基、二甲基和三甲基改性的SiO2载体,采用等体积浸渍法制备了质量分数为5%的一系列负载型钴催化剂.考察了有机改性对催化剂费托合成催化性能的影响.结果表明,SiO2经有机基团改性后,表面硅羟基浓度减小,削弱了钴硅之间的相互作用,促进了催化剂的还原,提高了催化剂的活性,降低了甲烷选择性.由于空间位阻不同,不同有机基团改性的SiO2的表面硅羟基浓度不同,催化剂活性随着表面硅羟基浓度的减小而提高.  相似文献   

12.
Mesoporous silica with squared one-dimensional channels (KSW-2-type mesoporous silica), possessing a molecularly ordered framework arising from a starting layered polysilicate kanemite, was obtained through silylation of a surfactant (hexadecyltrimethylammonium, C16TMA)-containing mesostructured precursor with octoxytrichlorosilane (C8H17OSiCl3) and octylmethyldichlorosilane (C8H17(CH3)SiCl2). The presence of the molecular ordering in the silicate framework was confirmed by XRD and TEM. Octoxy groups grafted on KSW-2 can be eliminated by subsequent hydrolysis under very mild condition, and pure mesoporous silica was obtained with the retention of the kanemite-based framework. The framework is structurally stabilized by the attachment of additional SiO4 units to the framework, and the mesostructural ordering hardly changed under the presence of water vapor. A large number of silanol groups remained at the mesopore surfaces because C16TMA ions and octoxy groups can be removed without calcination. Octylmethylsilyl groups are regularly arranged at the mesopore surface due to the molecular ordering in the silicate framework. The molecularly ordered structural periodicity originating from kanemite is retained even after calcination at 550 degrees C, while that in the precursor without silylation disappeared. The synthetic strategy is quite useful for the design of the silicate framework of mesostructured and mesoporous materials with and without surface functional organic groups.  相似文献   

13.
Wu JH  Li XS  Zhao Y  Zhang W  Guo L  Feng YQ 《Journal of chromatography. A》2011,1218(20):2944-2953
A novel core-shell composite (SiO(2)-nLPD), consisting of micrometer-sized silica spheres as a core and nanometer titania particles as a surface coating, was prepared by liquid phase deposition (LPD). Here, we show the resulting core-shell composite to have better efficient and selective enrichment for mono- and multi-phosphopeptides than commercially available TiO(2) spheres without any enhancer. The material exhibited favorable characteristics for HPLC, which include narrow pore size distribution, high surface area and pore volume. We also show that the core-shell composite can efficiently separate adenosine phosphate compounds due to the Lewis acid-base interaction between titania and phosphate group when used as HPLC packings. After coating the silica sphere with titania by LPD, the silanol of silica spheres will be shielded and that the stationary phase, C(18) bonded SiO(2)-3LPD, could be used under extreme pH condition.  相似文献   

14.
Large-sized, optical transparent mesostructured Brij 56/silica monolith has been fabricated using a lyotropic liquid crystal of Brij 56 (C16EO10) as a template and TMOS as a silica source, combined with a optimizing sol-gel process and a hydrothermal aging process. By programmed temperature drying and calcinations, translucent mesoporous silica monolith with two-dimensional hexagonal structure (P6mm) has bee obtained. The ordered mesoporous silica monoliths have been characterized by small-angle X-ray diffraction, transmission electron microscopy (TEM), and nitrogen adsorption, which shows that the materials have a highly ordered two-dimensional hexagonal mesostructure with the high specific surface area of 837 m2 · g−1 and narrow pore distribution with a mean BJH pore diameter of 2.73 nm. Based on calculations and differential scanning calorimetry and thermogravimetric analyses, the action mechanism of the hydrothermal aging process has been proposed: the 100°C hydrothermal conditions and autogenous 2.3 atm pressure promote the condensation and dehydration of silanol groups, with the result that cross-linking degree, the flaws and moisture content in gels are reduced notably. Those processes guarantee the integrity of gels in the following drying process.  相似文献   

15.
A commercially available silanol terminated silicone stationary phase, OV-61-OH (33% phenyl), and two phenyl-substituted siloxane/silarylene copolymers, Sila 3 (27% phenyl) and 4 (35% phenyl), have been evaluated for use as stationary phases in fused silica capillary columns for gas chromatography. Ulterations in column adsorptive activity, separation efficiency, stationary phase film thickness and selectivity after column conditioning for 50 h at 370°C have been studied. A high thermal stability was experienced with the stationary phases tested here. For OV-61-OH, the best thermal stability was obtained when coated on untreated fused silica, which illustrates the importance of grafting reactions here. The heat treatment resulted in some deactivation of adsorptive sites in the column. A higher degree of column deactivation was achieved when surface silylation was performed prior to coating. High thermal stability was achieved with Sila 3 when coated on such surfaces. Sila 3 would thus be preferred in cases when high thermal stability in combination with high dsorptive inertness is desired. Sila 4 showed low column bleeding at 370 °C, but prolonged heating at this temperature resulted in the broadening of n-alkane peaks when eluted at 90 °C. This indicates that excessive crosslinking has taken place during the heat treatment and the minimum allowable column operation temperature is thereby increased to ca. 120 °C. The separation of aza-arenes and of triglycerides are shown as applications.  相似文献   

16.
Thermogravimetric analysis of silica gel has shown that the loss in weight between 30° and 910°C can be quantitatively explained on the basis of water being lost from three distinct and different populations of sites on the silica gel surface. The results indicate that the site energies of the three different populations are randomly distributed and, consequently, the resulting weight loss steps from each population can be described by the integral of a simple normal distribution with temperature. The calculated weight loss obtained by assuming three different site-groups having randomly distributed adsorption energies is, within experimental error, coincident with the experimental data. It is also shown that the water evolved from the second population of sites originates from strongly bound water and may also contain water generated by the condensation of (geminal) silanol groups contained in the overlapping and neighbouring population.  相似文献   

17.
The thermal stability of silicones can be improved on replacement of certain of the oxygen atoms in the polymer backbone by phenyl groups. Such a polymer has been synthesized and evaluated for use as stationary phase in fused silica capillary gas chromatography; the polymer was dimethyl substituted and silanol terminated. A selectivity was provided by the phenyl groups in the backbone. For comparative purposes, a silanol-terminated dimethylpolysiloxane has also been evaluated. Both stationary phases gave columns of highest separation efficiency and the supporting fused silica surface was deactivated by the stationary phases on thermal treatment. Further, low column bleeding was observed at the maximum temperature tested, 370°C. The phenyl-containing phase could be immobilized to 60% by heat treatment, but the pure dimethylpolysiloxane was 10% immobilized. The influence on immobilization of factors such as nature of the supporting surface, stationary phase silanol content, reaction temperature and atmosphere in the column during reaction has been studied.  相似文献   

18.
A general method for the functionalization of silica surfaces with silicon hydride (Si–H) groups is described for four different preparations of silica. The silica surface is reduced in a two‐step chlorination–reduction procedure within a simple gas‐flow system at high temperatures. After initial dehydroxylation of the silica surface, silicon chloride groups are formed by the reaction with thionyl chloride. The chlorination activates otherwise inaccessible surface siloxane moieties. A high silicon–hydride surface concentration results from the subsequent reduction of the chlorinated surface with hydrogen. The physical properties of the resulting silica are analyzed using scanning electron microscopy, as well as dynamic light scattering and Brunauer–Emmet–Teller measurements. The chlorination–reduction sequence has no significant impact on the structure, surface area and mesopore size of the silica materials used. The surface of the materials is characterized by diffuse reflectance infrared Fourier transform (DRIFT) and 29Si CP/MAS NMR spectroscopy. The silicon–hydride groups are mostly of the ‐type. The use of high temperatures (>800 °C) results in the condensation of internal and surface silanol groups. Therefore, materials with both a fully condensed silica matrix as well as a surface free of silanol groups are obtained. The materials are ideal precursors for further molecular silica surface modification, as demonstrated with a ferrocene derivative.  相似文献   

19.
Surface tailoring control in micelle templated silica   总被引:1,自引:0,他引:1  
Surface tailoring control was studied using new concept surface-protector (SP) group that can covered a part of surface. In micelle templated silica, cationic surfactant had the role of SP group. Various methods of silylation on the surface coverage was done on the hexagonal micelle templated silicas and the samples was characterized using BET surface measurement, pore size distribution, FT-IR and 13C and 29Si MAS NMR. Direct silylation of micelle templated silica still containing the templating surfactant can lead to total or partial silylation of the internal (and external) surface depending on the silylation agent. A mixture of chlorotrimethylsilane in hexamethyldisiloxane leads to full coverage by trimethylsilyl groups and to a very hydrophobic surface. Using hexamethyldisilazane, the silylation drops down to 45-65% and displaces only partially the templating CTMA+ surfactant. The displacement of the remaining surfactant molecules leaves behind hydrophilic nests of the size of the ammonium heads (∼0.7 nm2). Cation exchange can be performed on these nests at pH to 10 without structure collapse.  相似文献   

20.
MCM-41 and SBA-15 silicas were studied by (29)Si solid-state NMR and (15)N NMR in the presence of (15)N-pyridine with the aim to formulate generic structural parameters that may be used as a checklist for atomic-scale structural models of this class of ordered mesoporous materials. High-quality MCM-41 silica constitutes quasi-ideal arrays of uniform-size pores with thin pore walls, while SBA-15 silica has thicker pore walls with framework and surface defects. The numbers of silanol (Q(3)) and silicate (Q(4)) groups were found to be in the ratio of about 1:3 for MCM-41 and about 1:4 for our SBA-15 materials. Combined with the earlier finding that the density of surface silanol groups is about three per nm(2) in MCM-41 (Shenderovich, et al. J. Phys. Chem. B 2003, 107, 11924) this allows us to discriminate between different atomic-scale models of these materials. Neither tridymite nor edingtonite meet both of these requirements. On the basis of the hexagonal pore shape model, the experimental Q(3):Q(4) ratio yields a wall thickness of about 0.95 nm for MCM-41 silica, corresponding to the width of ca. four silica tetrahedra. The arrangement of Q(3) groups at the silica surfaces was analyzed using postsynthesis surface functionalization. It was found that the number of covalent bonds to the surface formed by the functional reagents is affected by the surface morphology. It is concluded that for high-quality MCM-41 silicas the distance between neighboring surface silanol groups is greater than 0.5 nm. As a result, di- and tripodical reagents like (CH(3))(2)Si(OH)(2) and CH(3)Si(OH)(3) can form only one covalent bond to the surface. The residual hydroxyl groups of surface-bonded functional reagents either remain free or interact with other reagent molecules. Accordingly, the number of surface silanol groups at a given MCM-41 or SBA-15 silica may not decrease but increase after treatment with CH(3)Si(OH)(3) reagent. On the other hand, nearly all surface silanol groups could be functionalized when HN(Si(CH(3))(3))(2) was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号