首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
COX-2 inhibitors exhibit anticancer effects in various cancer models but due to the adverse side effects associated with these inhibitors, targeting molecules downstream of COX-2 (such as mPGES-1) has been suggested. Even after calls for mPGES-1 inhibitor design, to date there are only a few published inhibitors targeting the enzyme and displaying anticancer activity. In the present study, we have deployed both ligand and structure-based drug design approaches to hunt novel drug-like candidates as mPGES-1 inhibitors. Fifty-four compounds with tested mPGES-1 inhibitory value were used to develop a model with four pharmacophoric features. 3D-QSAR studies were undertaken to check the robustness of the model. Statistical parameters such as r2 = 0.9924, q2 = 0.5761 and F test = 1139.7 indicated significant predictive ability of the proposed model. Our QSAR model exhibits sites where a hydrogen bond donor, hydrophobic group and the aromatic ring can be substituted so as to enhance the efficacy of the inhibitor. Furthermore, we used our validated pharmacophore model as a three-dimensional query to screen the FDA-approved Lopac database. Finally, five compounds were selected as potent mPGES-1 inhibitors on the basis of their docking energy and pharmacokinetic properties such as ADME and Lipinski rule of five.  相似文献   

10.
Depression is a critical mood disorder that affects millions of patients. Available therapeutic antidepressant agents are associated with several undesirable side effects. Recently, it has been shown that Neurokinin 1 receptor (NK1R) antagonists can potentiate the antidepressant effects of serotonin-selective reuptake inhibitors (SSRIs). In this study, a series of phenyl piperidine derivatives as potent dual NK1R antagonists/serotonin transporter (SERT) inhibitors were applied to quantitative structure–activity relationship (QSAR) analysis. A collection of chemometrics methods such as multiple linear regression (MLR), factor analysis–based multiple linear regression (FA-MLR), principal component regression (PCR), and partial least squared combined with genetic algorithm for variable selection (GA-PLS) were applied to make relations between structural characteristics and NK1R antagonism/SERT inhibitory of these compounds. The best multiple linear regression equation was obtained from GA-PLS and MLR for NK1R and SERT, respectively. Based on the resulted model, an in silico-screening study was also conducted and new potent lead compounds based on new structural patterns were designed for both targets. Molecular docking studies of these compounds on both targets were also conducted and encouraging results were acquired. There was a good correlation between QSAR and docking results. The results obtained from validated docking studies indicate that the important amino acids inside the active site of the cavity that are responsible for essential interactions are Glu33, Asp395 and Arg26 for SERT and Ala30, Lys7, Asp31, Phe5 and Tyr82 for NK1R receptors.  相似文献   

11.
12.
Selective inhibition of phosphodiesterase 2 (PDE2) in cells where it is located elevates cyclic guanosine monophosphate (cGMP) and acts as novel analgesic with antinociceptive activity. Three-dimensional quantitative structure–activity relationship (QSAR) studies for pyrazolodiazepinone inhibitors exhibiting PDE2 inhibition were performed using comparative molecular field analysis (CoMFA), comparative molecular similarity indices analysis (CoMSIA) and Topomer CoMFA, and two-dimensional QSAR study was performed using a Hologram QSAR (HQSAR) method. QSAR models were generated using training set of 23 compounds and were validated using test set of nine compounds. The optimum partial least squares (PLS) for CoMFA-Focusing, CoMSIA-SDH, Topomer CoMFA and HQSAR models exhibited good ‘leave-one-out’ cross validated correlation coefficient (q2) of 0.790, 0.769, 0.840 and 0.787, coefficient of determination (r2) of 0.999, 0.964, 0.979 and 0.980, and high predictive power (r2pred) of 0.796, 0.833, 0.820 and 0.803 respectively. Docking studies revealed that those inhibitors able to bind to amino acid Gln859 by cGMP binding orientation called ‘glutamine-switch’, and also bind to the hydrophobic clamp of PDE2 isoform, could possess high selectivity for PDE2. From the results of all the studies, structure–activity relationships and structural requirements for binding to active site of PDE2 were established which provide useful guidance for the design and future synthesis of potent PDE2 inhibitors.  相似文献   

13.
Histone-modifying proteins have been identified as promising targets to treat several diseases including cancer and parasitic ailments. In silico methods have been incorporated within a variety of drug discovery programs to facilitate the identification and development of novel lead compounds. In this study, we explore the binding modes of a series of benzhydroxamates derivatives developed as histone deacetylase inhibitors of Schistosoma mansoni histone deacetylase (smHDAC) using molecular docking and binding free energy (BFE) calculations. The developed docking protocol was able to correctly reproduce the experimentally established binding modes of resolved smHDAC8–inhibitor complexes. However, as has been reported in former studies, the obtained docking scores weakly correlate with the experimentally determined activity of the studied inhibitors. Thus, the obtained docking poses were refined and rescored using the Amber software. From the computed protein–inhibitor BFE, different quantitative structure–activity relationship (QSAR) models could be developed and validated using several cross-validation techniques. Some of the generated QSAR models with good correlation could explain up to ~73% variance in activity within the studied training set molecules. The best performing models were subsequently tested on an external test set of newly designed and synthesized analogs. In vitro testing showed a good correlation between the predicted and experimentally observed IC50 values. Thus, the generated models can be considered as interesting tools for the identification of novel smHDAC8 inhibitors.  相似文献   

14.
15.
The inhibition of β-secretase (BACE1) is currently the main pharmacological strategy available for Alzheimer’s disease (AD). 2D QSAR and 3D QSAR analysis on some cyclic sulfone hydroxyethylamines inhibitors against β-secretase (IC50: 0.002–2.75 μM) were carried out using hologram QSAR (HQSAR), comparative molecular field analysis (CoMFA), and comparative molecular similarity indices analysis (CoMSIA) methods. The best model based on the training set was generated with a HQSAR q2 value of 0.693 and r2 value of 0.981; a CoMFA q2 value of 0.534 and r2 value of 0.913; and a CoMSIA q2 value of 0.512 and r2 value of 0.973. In order to gain further understand of the vital interactions between cyclic sulfone hydroxyethylamines and the protease, the analysis was performed by combining the CoMFA and CoMSIA field distributions with the active sites of the BACE1. The final QSAR models could be helpful in the design and development of novel active BACE1 inhibitors.  相似文献   

16.
A novel 3-(substituted benzylideneamino)-7-chloro-2-phenyl quinazoline-4(3H)-one (727) has been synthesized and characterised by IR, 1H NMR, 13C NMR spectroscopy, and elemental analysis. We changed the methodology for the synthesis of 3-amino 7-chloro-2-phenyl quinazolin-4(3H)-one 6 to fusion reaction at 250 °C, instead of using solvent, to avoid the problem of ring opening, which is commonly observed while synthesizing quinazolines from benzoxazinone. NCI selected, 7-chloro-3-{[(4-chlorophenyl) methylidene] amino}-2-phenylquinazolin-4(3H)-one 12, with GI50 value of ?5.59 M, TGI value of ?5.12 M, and LC50 value of ?4.40 M showed remarkable activity against CNS SNB-75 Cancer cell line. Rational approach and QSAR techniques enabled the understanding of the pharmacophoric requirement for 2,3,7-tri substituted quinazoline derivatives to inhibit EGFR-tyrosine kinase as antitumor agents and could be used as an excellent framework in this field that may lead to discovery of potent anti tumor agent.  相似文献   

17.
18.
Drug resistance to existing antibiotics poses alarming threats to global public health, which inspires heightened interests in searching for new antibiotics, including antimicrobial peptides (AMPs). Accurate prediction of antibacterial activities of AMPs may expedite novel AMP design and reduce the costs and efforts involved in laboratory screening. In the present study, a novel quantitative prediction method of AMP was established by quantitative structure-activity relationship (QSAR) modeling based on the physicochemical properties of amino acids. The indices of these physicochemical properties were used to define AMP. The structural variables were optimized by stepwise regression (STR). Three series of AMPs from the QSAR model were constructed by multiple linear regressions (MLR). These QSAR models showed good performance in reliability and predictability. The normalized regression coefficients of the QSAR model and the contribution of amino acids at each position of AMP may determine the suitableness of a particular residue at any given position. QSAR models constructed by STR-MLR should prove to be useful tools in peptide design with respect to the calculation, explanation, good and reliable performance, and definition of physiochemical properties.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号