首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A new type of weak localization of electrons emerging during electron emission is considered. It is manifested in singularities of the angular spectra of particles reflected inelastically from a solid and causing Auger ionization of the atoms. The orientational dependences in this case appear as a result of interference of two types of processes. In one case, an electron from the primary beam penetrates the solid, undergoes inelastic scattering, ionizes an atom, and is then scattered elastically through a large angle, after which it leaves the solid. In the other case, elastic scattering of an electron precedes its inelastic scattering due to the Auger ionization of an atom. The azimuthal angular dependences of currents created by inelastically reflected electrons contain information on new processes of weak localization of particles.  相似文献   

2.
The ionization and drift characteristics of electrons in argon are simulated by the method of multi-particle dynamics. It is shown that, in argon (as well as in other gases studied earlier), the Townsend regime of ionization sets in even in strong fields if the electrode distance is much larger than the reciprocal Townsend coefficient. The dependences of the basic ionization and drift characteristics on the reduced field intensity are obtained, and an escape curve is constructed separating the region of effective electron multiplication from the region where the electrons leave the discharge gap having no time to multiply. The formation efficiency of a runaway-electron beam is calculated. It is shown that the dependence of the electrode voltage generating a given fraction of runaway electrons on the product of the pressure by the electrode distance has a form that qualitatively agrees with the runaway curve. When the efficiency is not too high (≤20%), the runaway curves virtually coincide with isoefficiency curves.  相似文献   

3.
Ionization and drift characteristics of electrons in copper vapor in the presence of an external electric field are analyzed. In contrast to normal gases, in copper vapor, the excitation energy of lower states is significantly lower than the ionization potential and the excitation cross section is several times greater than the ionization cross section at the incident-electron energy on the order of the ionization energy. This can affect the characteristics of electron bunching in gas. It is demonstrated that, as in previously studied gases, the notion of the Townsend coefficient remains meaningful even in the presence of strong fields at which the electric force exceeds the electron drag force acting in gas. The dependences of the main ionization and drift characteristics on the reduced field strength, the escape curve (which separates the region of effective electron multiplication and the region where electrons leave the discharge gap without multiplication), and the curves of equal efficiency for the formation of runaway electrons are obtained. It is demonstrated that a relatively high excitation cross section of copper levels leads to a sharper peak on the dependence of the Townsend coefficient on the field strength and a narrower region of the effective electron multiplication in comparison with previously studied gases.  相似文献   

4.
The mechanism for dense-gas ionization is analyzed in the case when the deceleration of electrons by gas can be neglected in the equation of motion of a single electron. An expression for the electron energy distribution function in the presence of a strong field is derived. The characteristic width of the distribution corresponds to the energy acquired by the electron at a length determined by the inverse Townsend coefficient. The electron energy distributions are calculated for various distances form the cathode. It is demonstrated that the distribution becomes independent of the coordinate at a distance from the cathode that is significantly greater than the inverse Townsend coefficient. In this case, the distribution coincides with the distribution obtained with analytical calculations. The absence of the coordinate dependence is realized even in the presence of an extremely strong field when, in accordance with the commonly accepted point of view, the majority of electrons are runaway electrons.  相似文献   

5.
J N Das  S Dhar 《Pramana》1999,53(5):869-875
Energy spectrum of ejected electrons in ionization of hydrogen atoms has been calculated following a multiple scattering theory of Das and Seal [15]. The results show peaks around two to three Rydbergs of energies of the ejected electrons, for incident electron energy of 250 eV and 500 eV, considered here, and for different combinations of the angular variables of the scattered and the ejected electrons, for scattering in a plane. The peaks are very similar to those observed in relativistic K-shell ionization of Ag atoms by electrons at 500 KeV energy [6]. The physical origin of these peaks may be traced to the second order scatterings, scattering first by the atomic nucleus (or the atomic electron) and then a second time by the atomic electron. These peaks are, however, absent in the first Born results. Experimental verification of the present results and theoretical calculation by some other well-known methods will be interesting.  相似文献   

6.
We have measured fully differential cross sections for photo double ionization of helium 450 eV above the threshold. We have found an extremely asymmetric energy sharing between the photoelectrons and an angular asymmetry parameter beta approximately 2 and beta approximately 0 for the fast and slow electrons, respectively. The electron angular distributions show a dominance of the shakeoff for 2 eV electrons and clear evidence of an inelastic electron-electron scattering at an electron energy of 30 eV. The data are in excellent agreement with convergent close-coupling calculations.  相似文献   

7.
We reexamine the role of electron binding effects in the inelastic neutrino–atom scattering induced by the neutrino magnetic moment. The differential cross section of the process is presented as a sum of the longitudinal and transverse components, according to whether the force that the neutrino magnetic moment exerts on electrons is parallel or perpendicular to momentum transfer. The atomic electrons are treated nonrelativistically. On this basis, the recent theoretical predictions concerning the magnetic neutrino-impact ionization of atoms are critically discussed. Numerical calculations are performed for ionization of a hydrogenlike Ge+31 ion by neutrino impact.  相似文献   

8.
研究了强激光等离子体中多光子非线性Compton效应下阻尼电子与光子的散射特性,推出了其微分散射截面表达式。研究表明,尾波场的涨落和随机误差是电子发生纵向群聚的根本原因,且能引起电子更剧烈的群聚。电子横向动量的变化是引起电子和光子散射的根本原因,其微分散射截面随与一个电子同时作用的光子数的增大而减小,随散射非弹性成分的增大而迅速减小,但比激光场中的情况来得慢一些。只有当与电子同时作用的光子数与散射非弹性成分相等时电子才能被光场俘获。  相似文献   

9.
In strong electric fields the acceleration of the electrons by the field exceeds the deceleration by collisions with neutral molecules. Thus run-away or beam electrons are produced. This paper investigates the motion of the beam electrons in a neutral gas considering ionization processes by electron-molecule-impacts. We start with a time independent current of primary electrons (case a) and a space independant density of primary electrons (case b). The further development of the velocity distribution is calculated. For a molecular hydrogen gas the amplification of the initial electrons, the average ionization, and the velocity distribution of the electrons as a function of space or time respectively is given. The average ionization has an asymptotic solution, which becomes valid, when one primary electron has produced by ionization an avalanche of approximately 100 electrons. The Townsend coefficient α for high values of the field strength is independant of space only in the region of this asymptotic solution.  相似文献   

10.
The form of the electron distribution function in the positive column of low-pressure discharges is examined under conditions such that the electron mean free path exceeds the vessel radius. Its formation is analyzed taking all major factors into account, including elastic and inelastic collisions, radial and axial electric fields, and the loss of fast electrons to the wall. It is shown that the main mechanism controlling the fast part of the distribution function is the loss of electrons to the wall, which is determined by the scattering of electrons into a comparatively small loss cone that depends on the relationship between the axial and radial components of the velocity. Since the elastic collision rate for all elements has a weak dependence on the energy beyond the ionization threshold, ultimately the high-energy part of the electron energy distribution function in the positive column of low-pressure discharges is nearly Maxwellian. The subthreshold portion of the distribution function, in turn, is determined by the energy diffusion, in a comparatively strong field, of Maxwellian electrons which arrive after inelastic collisions. The final electron distribution function is well approximated by an exponential with a single slope over the entire energy range. Only within a narrow range of scattering angles is the electron distribution function strongly depleted by the loss of electrons to the vessel walls. In the end, it is concluded that this phenomenon, like the Langmuir paradox, may be related to aspects of the physics of the formation of the electron distribution function owing to a combination of already known mechanisms, rather than to a hypothetical mechanism for thermalization of the electrons, as assumed up to now in the literature. A comparison of solutions of the model kinetic equation given here with published Monte Carlo calculations and experimental data shows that they are in good agreement. Zh. Tekh. Fiz. 69, 34–41 (November 1999)  相似文献   

11.
A physical model of the laser induced electron transport in dielectric with small size is discussed. The model assumes that free electrons are originally existent or produced by impact detrapping. The free electrons transporting in low dimensional dielectrics interact with phonons and surface. When the laser electric field strength is high enough, the inelastic electron scattering such as impact ionization and cascade processes will play important roles. A small size effect has been found in electron absorbing laser energy under the conditions that the laser wavelength is in near infrared zone and the material has size in nanometer level. This is a very significative effect to enlighten us on preparing ultrahigh threshold laser films with new nano-structure.  相似文献   

12.
The standard classical method of computer simulation is used for evaluation of the inelastic cross section in electron collisions with a highly excited (Rydberg) atom. In the course of collision, the incident and bound electrons move along classical trajectories in the Coulomb field of the nucleus, and the scattering parameters are averaged over many initial conditions. The reduced ionization cross section of a Rydberg atom by electron impact approximately corresponds to that of atoms in the ground states with valence s-electrons and coincides with the results of the previous Monte Carlo calculations. The cross section of an atom transition between Rydberg atom states as a result of electron impact is used for finding the stepwise ionization rate constant of atoms in collisions with electrons or the rate constant of three-body electron-ion recombination in a dense ionized gas because these processes are determined by kinetics of highly excited atom states. Surprisingly, the low-temperature limit of electron temperatures is realized when the electron thermal energy is lower than the atom ionization potential by about three orders of magnitude, as follows from the kinetics of excited atom states. The article is published in the original.  相似文献   

13.
A theory of the inelastic scattering of slow electrons in solids due to excitation of interband transitions is developed. It is shown that both nondirect and direct transitions occur which can be described by a generalization of the formalism used in solid state optics. Experiments with 30–200 eV electrons scattered from Si (111) surfaces with well defined surface structures as determined by low energy electron diffraction confirm the theoretical predictions. They indicate that the inelastic scattering of slow electrons can be understood in terms of the three-dimensional band structure of solids and suggest the use of inelastic low energy electron scattering as a tool for band structure analysis.  相似文献   

14.
This paper examines one basic process causing the d. c. high voltage breakdown of a gas. Specifically, it contains a modified criterion for the transition of a Townsend Avalanche to a Streamer Discharge. Instead of the assumption that the electrons in the avalanche are spread laterally by multiple scattering on gas molecules (thermal diffusion), the assumption used is that the electrons are spread solely by mutual electrostatic repulsion. A criterion is found that yields quantitative results comparable to those obtained using the "multiple scattering" assumption. This modified criterion is probably most useful where "multiple scattering" is improbable - where an electron loses almost all of its energy on colliding with complex gas molecules. In addition, the classical (thermal-diffusion-dominated) breakdown criterion is re-derived in a much simpler form.  相似文献   

15.
The inelastic electron scattering cross section spectra of Fe have been calculated based on experimental spectra of characteristic reflection electron energy loss as dependences of the product of the inelastic mean free path by the differential inelastic electron scattering cross section on the electron energy loss. It has been shown that the inelastic electron scattering cross-section spectra have certain advantages over the electron energy loss spectra in the analysis of the interaction of electrons with substance. The peaks of energy loss in the spectra of characteristic electron energy loss and inelastic electron scattering cross sections have been determined from the integral and differential spectra. It has been shown that the energy of the bulk plasmon is practically independent of the energy of primary electrons in the characteristic electron energy loss spectra and monotonically increases with increasing energy of primary electrons in the inelastic electron scattering cross-section spectra. The variation in the maximum energy of the inelastic electron scattering cross-section spectra is caused by the redistribution of intensities over the peaks of losses due to various excitations. The inelastic electron scattering cross-section spectra have been analyzed using the decomposition of the spectra into peaks of the energy loss. This method has been used for the quantitative estimation of the contributions from different energy loss processes to the inelastic electron scattering cross-section spectra of Fe and for the determination of the nature of the energy loss peaks.  相似文献   

16.
A new Monte Carlo simulation of the trade structure of low-energy electrons(10keV) in liquid water is presented.The feature of the simulation is taken into consideration of the condensed-phase effect of liquid water on electron elastic scattering with the use of the Champion model,while the dielectric response formalism incorporating the optical-data model developed by Emfietzoglou et al.is applied for calculating the electron inelastic scattering.The spatial distributions of energy deposition and inelastic scattering events of low-energy electrons with different primary energies in liquid water are calculated and compared with other theoretical evaluations.The present work shows that the condensed-phase effect of liquid water on electron elastic scattering may be of the influence on the fraction of absorbed energy and distribution of inelastic scattering events at lower primary energies,which also indicate potential effects on the DNA damage induced by low-energy electrons.  相似文献   

17.
The cross section is studied for the inelastic magnetic scattering of epithermal neutrons by electrons in a metal where the states for the electrons are described by band theory. If the ratio between the wave number of the electrons and the wave number of the incoming neutrons is small compared with unity but not smaller than the mass ratio between electron and neutron, it is possible to calculate the cross section in the vicinity of certain scattering angles more closely. By such experiments one could obtain some information about the diameter of the Fermi surface and the mass tensor of the electrons.  相似文献   

18.
New understanding of mechanism of the runaway electrons beam generation in gases is presented. It is shown that the Townsend mechanism of the avalanche electron multiplication is valid even for the strong electric fields when the electron ionization friction on gas may be neglected. A non-local criterion for a runaway electron generation is proposed. This criterion results in the universal two-valued dependence of critical voltage U cr on pd for a certain gas (p is a pressure, d is an interelectrode distance). This dependence subdivides a plane (U cr , pd) onto the area of the efficient electron multiplication and the area where the electrons leave the gas gap without multiplication. On the basis of this dependence analogs of Paschen’s curves are constructed, which contain an additional new upper branch. This brunch demarcates the area of discharge and the area of e-beam. The mechanism of the formation of the recently created atomospheric pressure subnanosecond e-beams is discussed. It is shown that the beam of the runaway electrons is formed at an instant when the plasma of the discharge gap approaches to the runaway electrons is formed at an instant when the plasma of the discharge gap approaches to the anode. In this case a basic pulse of the electron beam is formed according to the non-local criterion of the runaway electrons generation. The role of the discharge gap preionization by the fast electrons, emitted from the plasma non-uniformities on the cathode, as well as a propagation of an electron multiplication wave from cathode to anode in a dense gas are considered.  相似文献   

19.
《Physics Reports》1998,297(6):271-344
A semiclassical scattering approach is developed which can handle long-range (Coulomb) forces without the knowledge of the asymptotic wave function for multiple charged fragments in the continuum. The classical cross section for potential and inelastic scattering including fragmentation (ionization) is derived from first principles in a form which allows for a simple extension to semiclassical scattering amplitudes as a sum over classical orbits and their associated actions. The object of primary importance is the classical deflection function which can show regular and chaotic behavior. Applications to electron impact ionization of hydrogen and electron–atom scattering in general are discussed in a reduced phase space, motivated by partial fixed points of the respective scattering systems. Special emphasis, also in connection with chaotic scattering, is put on threshold ionization. Finally, motivated by the reflection principle for molecules, a semiclassical hybrid approach is introduced for photoabsorption cross sections of atoms where the time-dependent propagator is approximated semiclassically in a short-time limit with the Baker–Hausdorff formula. Applications to one- and two-electron atoms are followed by a presentation of double photoionization of helium, treated in combination with the semiclassical S-matrix for scattering.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号