首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Camels are raised in harsh desert environment for hundreds of years ago. By modernization of live and the growing industrial revolution in camels rearing areas, camels are exposed to considerable amount of chemicals, industrial waste, environmental pollutions and drugs. Furthermore, camels have unique gene evolution of some genes to withstand living in harsh environments. In this work, the camel cytochrome P450 2E1 (CYP2E1) is compromised to detect its evolution rate and its power to bind with various chemicals, protoxins, procarcinogens, industrial toxins and drugs. In comparison with human CYP2E1, camel CYP2E1 more efficiently binds to small toxins as aniline, benzene, catechol, amides, butadiene, toluene and acrylamide. Larger compounds were more preferentially bound to the human CYP2E1 in comparison with camel CYP2E1. The binding of inhalant anesthetics was almost similar in both camel and human CYP2E1 coinciding with similar anesthetic effect as well as toxicity profiles. Furthermore, evolutionary analysis indicated the high evolution rate of camel CYP2E1 in comparison with human, farm and companion animals. The evolution rate of camel CYP2E1 was among the highest evolution rate in a subset of 57 different organisms. These results indicate rapid evolution and potent toxin binding power of camel CYP2E1.  相似文献   

2.
    
Polyphenol oxidases (PPOs)/tyrosinases are metal-dependent enzymes and known as important targets for melanogenesis. Although considerable attempts have been conducted to control the melanin-associated diseases by using various inhibitors. However, the exploration of the best anti-melanin inhibitor without side effect still remains a challenge in drug discovery. In present study, protein structure prediction, ligand-based pharmacophore modeling, virtual screening, molecular docking and dynamic simulation study were used to screen the strong novel inhibitor to cure melanogenesis. The 3D structures of PPO1 and PPO2 were built through homology modeling, while the 3D crystal structures of PPO3 and PPO4 were retrieved from PDB. Pharmacophore modeling was performed using LigandScout 3.1 software and top five models were selected to screen the libraries (2601 of Aurora and 727, 842 of ZINC). Top 10 hit compounds (C1-10) were short-listed having strong binding affinities for PPO1-4. Drug and synthetic accessibility (SA) scores along with absorption, distribution, metabolism, excretion and toxicity (ADMET) assessment were employed to scrutinize the best lead hit. C4 (name) hit showed the best predicted SA score (5.75), ADMET properties and drug-likeness behavior among the short-listed compounds. Furthermore, docking simulations were performed to check the binding affinity of C1-C10 compounds against target proteins (PPOs). The binding affinity values of complex between C4 and PPOs were higher than those of other complexes (−11.70, −12.1, −9.90 and −11.20 kcal/mol with PPO1, PPO2, PPO3, or PPO4, respectively). From comparative docking energy and binding analyses, PPO2 may be considered as better target for melanogenesis than others. The potential binding modes of C4, C8 and C10 against PPO2 were explored using molecular dynamics simulations. The root mean square deviation and fluctuation (RMSD/RMSF) graphs results depict the significance of C4 over the other compounds. Overall, bioactivity and ligand efficiency profiles suggested that the proposed hit may be more effective inhibitors for melanogenesis.  相似文献   

3.
    
Influenza virus of different subtypes H1N1, H2N2, H3N2 and H5N1 cause many human pandemic deaths and threatening the people worldwide. The Hemagglutinin (HA) protein mediates viral attachment to host receptors act as an attractive target. The sixteen natural compounds have been chosen to target the HA protein. Molecular docking studies have been performed to find binding affinity of the compounds. Out of the sixteen, three compounds CI, CII and CIII found to posses a higher binding affinity. The molecular dynamics (MD) simulation has been performed to study the structural, dynamical properties for the nine different complexes CI, CII, CIII bound with H1, H2, H3 proteins and the results were compared. The molecular mechanics Poission-Boltzmann surface area (MM-PBSA) method is used to compare the binding free energy, its different energy components and per residue binding contribution. The H1 subtype shows higher binding preference for all the curcumin derivatives than H2 and H3. The binding capability of protein subtypes with curcumin derivatives and the binding affinity of curcumin compounds are in the order H1 > H2 > H3 and CI > CII > CIII respectively. The two -O-CH3- groups present in the CI compound help to have strong binding with HA protein than CII and CIII. The van der Waals interaction energy plays a significant role for binding in all the complexes. The hydrogen bonding interactions were monitored throughout the MD simulation. The conserved region (153–155) and the helix region (193–194) of H1, H2, H3 protein subtypes are found to possess higher binding susceptibility for binding of the curcumin derivatives.  相似文献   

4.
采用分子动力学模拟方法系统地研究了谷胱甘肽硫转移酶家族(Glutathione S-transferases,GSTs)的等位基因蛋白B(GSTP1*B)与抑制剂利尿酸(EA)以及EA的谷胱甘肽(GSH)共轭物EAG(I),EAG(O)的具体结合方式.抑制剂及其谷胱甘肽共轭物与蛋白的相互作用能计算结果及分子动力学轨迹的统计分析结果表明,GSTP1*B与EA的谷胱甘肽共轭物的结合能力优于其与EA的结合能力,Phe8,Arg13,Trp38和Tyr108是作用过程中的关键残基,对稳定抑制剂及其谷胱甘肽共轭物在GSTP1*B的G和H位点的构象具有重要的作用.通过对构象的统计分析发现,残基Phe8和Tyr108与GSTP1*B酶对抑制剂的选择性密切相关.  相似文献   

5.
GSH对两种谷胱甘肽过氧化物酶模拟物活性影响的研究   总被引:1,自引:0,他引:1  
设计并合成了谷胱甘肽过氧化物酶(GPX)模拟物6A,6A’-二苯胺-6B,6B’-二硒桥联-β-环糊精(6-AnSeCD). 采用双酶偶联法测定GPX的活力结果显示, 6A,6A’-二环己胺-6B,6B’-二硒桥联-β-环糊精(6-CySeCD)催化谷胱甘肽还原H2O2和枯烯H2O2的活力均比6-AnSeCD的高. 为了进一步考察6-CySeCD和6-AnSeCD与GSH之间的相互作用, 进行了分子动力学(MD)模拟和分子对接研究. 结果表明, 与GSH的结合使GPX模拟物的构象发生变化, 这种改变可能是影响桥连GPX模拟物催化活性的关键因素.  相似文献   

6.
    
Molecular Docking (Mol.dock) of resorcinol based acridinedione dyes (ADR1 and ADR2) with a globular protein, Human Serum Albumin (HSA) were carried out. Docking studies reveal that ADR2 dye binding with HSA is energetically more stable and feasible than ADR1 dye. ADR1 dye predominantly resides in site I and III of HSA rather than binding site II wherein, ADR1 dye acts as hydrogen bonding (HB) acceptor through its carbonyl oxygen. On the contrary, ADR2 dye resides in all the binding sites of HSA such that the dye acts as the HB donor through the NH hydrogen atom and the carbonyl oxygen of the amino acid acts as the HB acceptor. The stability of dye-protein complex in the presence of several non-steroidal anti-inflammatory drugs (NSAIDs) was carried out by employing specific site selective drugs (Sudlow binding site drugs). The energetics and the bimolecular interactions of various drugs with ADR1-HSA and ADR2-HSA were generated to ascertain the influence of drug and its governance on the binding affinity of dye-protein complex. Sudlow site I binding drugs were effective in decreasing the energetics of ADR1 dye-HSA complex whereas site II binding drugs predominantly decreases the affinity of ADR2 dye with HSA. However, the dyes efficiently displaces the site specific drugs from their specific binding sites of HSA which was not observed in the case of drugs on the displacing ability over dyes situated in different domains of protein. Mol.dock studies are employed as an authentic, reliable and most effective tool to ascertain the binding stability of host–guest complex as well as to ascertain the most probable location of several competing ligands in various domains of HSA.  相似文献   

7.
8.
HIV-1 membrane fusion plays an important role in the process that HIV-1 entries host cells. As a treatment strategy targeting HIV-1 entry process, fusion inhibitors have been proposed. Nevertheless, development of a short peptide possessing high anti-HIV potency is considered a daunting challenge. He et al. found that two residues, Met626 and Thr627, located the upstream of the C-terminal heptad repeat of the gp41, formed a unique hook-like structure (M-T hook) that can dramatically improve the binding stability and anti-HIV activity of the inhibitors. In this work, we explored the molecular mechanism why M-T hook structure could improve the anti-HIV activity of inhibitors. Firstly, molecular dynamic simulation was used to obtain information on the time evolution between gp41 and ligands. Secondly, based on the simulations, molecular mechanics Poisson–Boltzmann surface area (MM-PBSA) and molecular mechanics Generalized Born surface area (MM-GBSA) methods were used to calculate the binding free energies. The binding free energy of the ligand with M-T hook was considerably higher than the other without M-T. Further studies showed that the hydrophobic interactions made the dominant contribution to the binding free energy. The numbers of Hydrogen bonds between gp41 and the ligand with M-T hook structure were more than the other. These findings should provide insights into the inhibition mechanism of the short peptide fusion inhibitors and be useful for the rational design of novel fusion inhibitors in the future.  相似文献   

9.
The haloalkane dehalogenase LinB from Sphingomonas paucimobills UT26 was found to transform the 1,2,3-trichloropropane(TCP) into inorganic halide ions and 2,3-dichloro-1-propanol although the catalytic activity is very low(Kcat=0.005 s-1).In this study,molecular dynamics simulation and docking studies were performed to investigate the binding of TCP to LinB.The docking results indicate that LinB does not restrict TCP to be bound productively in the active site and the water-mediated inhibition occurs in the...  相似文献   

10.
Four acrylamide polymer flocculants, anionic polyacrylamide P(AA-co-AM), cationic poly-acrylamide P(DMB-co-AM), nonionic polyacrylamide P(AM), and hydrophobical polyacry-lamide P(OA-co-AM) have been prepared by copolymerizing with acrylic acid, cationic monomer dimethylethyl (acryloxyethyl) ammonium bromide (DMB) and hydrophobical monomer octadecyl acrylate with acrylamide. The interactions between the flocculants withthe (012) surface of alumina crystal (Al2O3) have been simulated by molecular dynamics method. All the polymers can bind tightly with Al2O3 crystal, the interaction between the O of polymers and Al of the (012) surface of Al2O3 is significantly strong. The order of binding energy is as follows: P(DMB-co-AM)>P(OA-co-AM)>P(AA-co-AM)>P(AM), implying a better flocculation performance of P(DMB-co-AM) than the others. Analy-sis indicates that binding energy is mainly determined by Coulomb interaction. Bonds are found between the O atoms of the polymers and the Al atoms of Al2O3. The poly-mers' structures deform when they combine with Al2O3 crystal, but the deformation en-ergies are low and far less than non-bonding energies. Flocculation experiments in sus-pension medium of 1%Kaolin show a transmittancy of 90.8% for 6 mg/L P(DMB-co-AM) and 73.0% for P(AM). The sequence of flocculation performance of four polymers is P(DMB-co-AM)>P(OA-co-AM)>P(AA-co-AM)>P(AM), which is in excellent agreement with the simulation results of binding energy.  相似文献   

11.
Fat mass and obesity-associated (FTO) protein contributes to non-syndromic human obesity which refers to excessive fat accumulation in human body and results in health risk. FTO protein has become a promising target for anti-obesity medicines as there is an immense need for the rational design of potent inhibitors to treat obesity. In our study, a new scaffold N-phenyl-1H-indol-2-amine was selected as a base for FTO protein inhibitors by applying scaffold hopping approach. Using this novel scaffold, different derivatives were designed by extending scaffold structure with potential functional groups. Molecular docking simulations were carried out by using two different docking algorithm implemented in CDOCKER (flexible docking) and AutoDock programs (rigid docking). Analyzing results of rigid and flexible docking, compound MU06 was selected based on different properties and predicted binding affinities for further analysis. Molecular dynamics simulation of FTO/MU06 complex was performed to characterize structure rationale and binding stability. Certainly, Arg96 and His231 residue of FTO protein showed stable interaction with inhibitor MU06 throughout the production dynamics phase. Three residues of FTO protein (Arg96, Asp233, and His231) were found common in making H-bond interactions with MU06 during molecular dynamics simulation and CDOCKER docking.  相似文献   

12.
    
In an attempt to rationalize the search for new potential anti-inflammatory compounds on the COX-2 enzyme, we carried out an in silico protocol that successfully combines the prediction of physicochemical and pharmacokinetic properties, molecular docking, molecular dynamic simulation, and free energy calculation. Starting from a small library of compounds synthesized previously, it was found that 70% of the compounds analyzed satisfy with the associated values to physicochemical principles as key evaluation parameters for the drug-likeness; all the compounds presented good gastrointestinal absorption and cerebral permeability and they showed an interaction with the Arg 106 residue of the COX-2 isoenzyme. Finally, it was obtained that compound 3ab has a binding mode, binding energy, and stability in the active site of COX-2 like the reference drug celecoxib, suggesting that this compound could become a powerful candidate in the inhibition of the COX-2 enzyme. In addition, we realized the crystallographic analysis of compounds 3j, 3r, and 3t defining the crystal parameters and the Packing interactions.  相似文献   

13.
Phytochemicals present in medicinal plants have a variety of biological activities that help to combat against diseases. As part of efforts to study the binding performance of different phytochemicals derived from different plants like Zingiber officinale, Citrus limon, Syzygiumaromaticum, Ocimum tenuiflorum and Curcumin. We have screened 424 molecules. The binding affinity as well as physicochemical properties of the thebaine, acacetin, indomethacin, crinamineacetate, (S)-1-Piperideine-6-carboxylate, levamisole, melatonin, nicotinicacid, curcumin, methotrimeprazine, omeprazole, and methaqualone phytocompounds were analyzed through computational study. From the molecular docking study we found that, LEU50, ASN72, PRO96, TYR154, GLY170, ALA193, ARG222, and MET274 residues of main protease play a crucial role in binding with ligands. The present study revealed a noticeable interaction of GLY446, SER477, GLY482, THR500 and LEU518 residues with mutant of spike receptor binding domain SARS-CoV-2 protein were observed. Finally, 100 ns molecular dynamics simulation were used to study their dynamic properties as well as conformational flexibility. Free energy landscape analysis was performed of the 6LU7- acacetin and 6Y2E-acacetin systems and spike RBD-acacetin system. From molecular docking study and molecular dynamics study revealed that, the compound acacetin shows promising inhibitor towards both main protease as well as mutant spike RBD of SARS-CoV-2 protein.  相似文献   

14.
    
The global emergency caused by COVID-19 makes the discovery of drugs capable of inhibiting SARS-CoV-2 a priority, to reduce the mortality and morbidity of this disease. Repurposing approved drugs can provide therapeutic alternatives that promise rapid and ample coverage because they have a documented safety record, as well as infrastructure for large-scale production. The main protease of SARS-CoV-2 (Mpro) is an excellent therapeutic target because it is critical for viral replication; however, Mpro has a highly flexible active site that must be considered when performing computer-assisted drug discovery. In this work, potential inhibitors of the main protease (Mpro) of SARS-Cov-2 were identified through a docking-assisted virtual screening procedure. A total of 4384 drugs, all approved for human use, were screened against three conformers of Mpro. The ligands were further studied through molecular dynamics simulations and binding free energy analysis. A total of nine currently approved molecules are proposed as potential inhibitors of SARS-CoV-2. These molecules can be further tested to speed the development of therapeutics against COVID-19.  相似文献   

15.
应用AutoDock程序将SARS冠状病毒3CL蛋白酶及其抑制剂配体和受体进行了对接,并用InsightⅡ中的Discover 3模块进行了分子动力学模拟,分析了蛋白酶活性口袋的形状,讨论了其亚基的氢键、静电、疏水等相互作用,为进一步设计药物提供了重要的参考信息.  相似文献   

16.
    
There is currently a global COVID-19 pandemic caused by the severe acute respiratory syndrome Coronavirus-2 (SARS-CoV-2) and its variants. This highly contagious viral disease continues to pose a major health threat global. The discovery of vaccinations is not enough to prevent their spread and dire consequences. To take advantage of the current drugs and isolated compounds, and immediately qualifying approach is required. The aim of our research is evaluation the potency for natural antiviral compounds against the SARS CoV-2 Mpro. Molecular docking of four phenolic compounds from Phillyrea angustifolia leaves with SARS-CoV-2 Mpro has been conducted. Similarly, the stability of selected ligand–protein interactions has been determined using MD simulations. Moreover, the quantitative structure–activity relationship (QSAR), MMGBSA binding energies, pharmacokinetics, and drug-likeness predictions for selected phenolic have been reported. The selected phenolic compounds (Luteolin-7-O-glucoside, Apigenin-7-O-glucoside, Demethyl-oleuropein, and Oleuropein aglycone) revealed strong binding contacts in the two active pockets of a target protein of SARS-CoV-2 Mpro with the docking scores and highest binding energies with a binding energy of ?8.2 kcal/mol; ?7.8 kcal/mol; ?7.2 kcal/mol and ?7.0 kcal/mol respectively. Both Demethyloleoeuropein and Oleuropein aglycone can interact with residues His41 and Cys145 (catalytic dyad) and other amino acids of the binding pocket of Mpro. According to QSAR, studies on pharmacokinetics and drug-like properties suggested that oleuropein aglycone could be the best inhibitor of SARS-CoV-2 for new drug design and development. Further in vivo, in vitro, and clinical studies are highly needed to examine the potential of these phenolic compounds in the fight against COVID-19.  相似文献   

17.
盐酸拓扑替康与人血清白蛋白的相互作用及分子模拟   总被引:4,自引:0,他引:4  
用荧光光谱法、分光光度法研究了盐酸拓扑替康(topotecan hydrochloride, 简记为THC)与人血清白蛋白(human serum albumins, HSA)的相互结合反应. 计算了反应的结合常数、结合位点数和热力学常数. 盐酸拓扑替康在人血清白蛋白上的结合位置与色氨酸残基间的距离为3.63 nm. 分子模型研究表明, 盐酸拓扑替康与人血清白蛋白的亚结构域IIA结合, 二者间的作用力主要为疏水作用, 此外, 蛋白质的丙氨酸(Ala-291)残基和天冬氨酸(Asp-256)残基与盐酸拓扑替康之间还存在氢键作用力.  相似文献   

18.
    
Crimean-Congo Hemorrhagic Fever Virus (CCHFV) is one of the deadliest human diseases with mortality rate near 50%. Special attention should be paid to this virus since there is no approved treatment for it. On the other hand, the recent outbreak of Ebola virus which is a member of hemorrhagic fever viruses shows this group of viruses can be extremely dangerous. Previous studies have indicated that nucleoprotein of CCHFV, a pivotal protein in virus replication, is an appropriate target for antiviral drug development. The aim of this study is finding inhibitor(s) of this protein. Herein, a virtual screening procedure employing docking followed by molecular dynamic was used to identify small molecule inhibitors of the nucleoprotein from FDA-approved drugs. Regarding CCHFV, using in-silico method is a safe way to achieve its inhibitor(s) since this virus is categorized as a World Health Organization (WHO) biosafety level 4 pathogen and therefore investigation in general laboratories is restricted. In conclusion, considering docking and molecular dynamic results alongside with bioavailability of FDA-approved drugs, doxycycline and minocycline are proposed as potential inhibitors of CCHFV nucleoprotein. There is hope, this study encourage other research groups for in-vitro and in-vivo studies about the efficacy of those two medicines in CCHFV treatment.  相似文献   

19.
The electromotive force of the concentration cell, in which both half‐cells contain the same concentration of sodium chloride, and one of which also contains hemoglobin (Hb), was measured on the isoelectric point of Hb (pH = 6.70). On the basis of Scatchard equation, a stepwise binding model and an improved calculation method were presented. Using the new calculation method, the number of the chloride‐binding sites on Hb molecule and the corresponding binding constants were calculated. The results show that there are three classes of binding groups on a Hb molecule, the number of the binding sites and the corresponding binding constants are n1 = 1, K01 = 245; n2 = 8, K02 = 3.50; n3 = 8, K03 = 1.91, respectively. The factors of influencing the interaction between Cl? and Hb molecule were clarified, and that the differences between our results and the results of computer modeling, as well as the results of molecular dynamics simulation were also discussed.  相似文献   

20.
Our previous study has shown that there is a good correlation between the number of charges of DNA (from trimer to 50-mer) and the number of binding sites B in electrostatic interaction chromatography (ion-exchange chromatography, IEC). It was also found that high salt (NaCl) concentration is needed to elute large DNAs (>0.6 M). In this paper we further performed experiments with large DNAs (up to 95-mer polyT and polyA) and charged liposome particles of different sizes (ca. 30, 50 and 100 nm) with a monolithic anion-exchange disk in order to understand the binding and elution mechanism of very large charged biomolecules or particles. The peak salt (NaCl) concentration increased with increasing DNA length. However, above 50-mer DNAs the value did not increase significantly with DNA length (ca. 0.65–0.70 M). For liposome particles of different sizes the peak salt concentration (ca. 0.62 M) was similar and slightly lower than that for large DNAs (ca. 0.65–0.70 M). The binding site values (ca. 25–30) are smaller than those for large DNAs. When arginine was used as a mobile phase modulator, the elution position of polyA and polyT became very close whereas in NaCl gradient elution polyT appeared after polyA eluted. This was mainly due to suppression of hydrophobic interaction by arginine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号