首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Benzoyl-pentafluoropropionylmethylene triphenylarsorane contains two strongly electron-withdrawing groups in alkylidene moiety. Single crystals obtained from CH3OH-H2O solution are triclinic, the space group is \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm{P}}\bar 1 $\end{document}, with a = 12.292Å, b = 13.457Å, c = 15.318Å, α = 90.562° β = 90.516°, γ = 92.820°, and Z = 4. The X-ray diffraction intensity data were collected with a four-circle diffractometer. The structure has been solved by heavy-atom method and refined by block-diagonal least-squares method. The final R was 0.061 for 8393 independent observed reflections. The ylide carbon is planar sp2 hybridized. The bond length of As-Cylide is 1.888Å, much longer than As = C, and also longer than the corresponding bond length in other arsonium ylides previously reported, indicating a smaller contribution of “double bond” canonical form to the overall structure. On the other hand, the easier delocalization of negative charge due to the two strongly electron-withdrawing groups results in the greater chemical stability.  相似文献   

2.
The structure of the complex {(2-α-pyridylethyl)tris(phenyl)phosphonium}trichlorozinc(II), which is an unexpected product of the reaction of the Zn2+ ion with coordinated 4,5-(2-pyridylethylene)dithio-1,3-dithiol-2-thione, is described. The reaction mechanism is studied by the ESI method of positive and negative ions. The crystals are monoclinic, space group P21/c, a= 16.129(3) Å, b = 11.167(2) Å, c = 14.874(3) Å β = 91.77(3)°, Z = 4. The Zn(II) atom has a quasi-tetrahedral environment of three chloride ions and one phosphonium cation coordinated at the nitrogen atom of the pyridyl fragment.  相似文献   

3.
The reaction between dialkyl acetylenedicarboxylates and NH heterocyclic compounds in the presence of triethyl phosphite leads to stable phosphorus ylide derivatives in good yields. The X‐ray crystallographic data and theoretical study show that there is a resonance between two bonds of C19P1 and C191O191 in phosphorus ylide 4d . This compound crystallizes in the orthorhombic system, space group (Pca21), with unit cell parameters a = 17.3699(3) Å, b = 13.5500(2) Å, c = 18.4627(3) Å, α = 90°, β = 90°, γ = 90°, Z = 8, and V = 4345.4(12) Å3. © 2011 Wiley Periodicals, Inc. Heteroatom Chem 22:715–722, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20739  相似文献   

4.
Silanones 2 substituted by bulky amino‐ and phosphonium ylide substituents have been synthesized and isolated in crystalline form. Thanks to the steric protection and the strong electron‐donating ability of the substituents, silanones 2 are persistent and only slowly dimerizes at room temperature (t 1/2=0.5 or 5 h). Structural and theoretical analysis of 2 indicate a short Si=O bond (1.533 Å) and an enhanced polarization toward the O atom compared to Me2Si=O owing to the strong π‐electron donation from the phosphonium ylide substituent.  相似文献   

5.
Three 3, 5‐dimethylpyrazole (pz*) copper(II) complexes, [Cu(pz*)4(H2O)](ClO4)2 ( 1 ), [Cu(pz*)2(NCS)2]·H2O ( 2 ), and [Cu(pz*)2(OOCCH=CHCOO)(H2O)]·1.5H2O ( 3 ), have been synthesized and characterized with single crystal X‐ray structure analysis. 1 crystallizes in the tetragonal space group, 14/m, with a = 14.027 (3) Å, c = 16.301 (5) Å, and Z = 4. 2 crystallizes in the monoclinic space group, P21/c, with a = 8.008 (3) Å, b = 27.139 (9) Å, c = 8.934 (3) Å, β = 106.345 (6)°, and Z = 4. 3 crystallizes in the triclinic space group, P1¯, with a = 7.291 (9) Å, b = 10.891 (13) Å, c = 11.822 (14) Å, α = 80.90 (2)°, β = 79.73(2)°, γ = 70.60(2)°, and Z = 2. In 1 , one water molecule and four pz* ligands are coordinated to CuII. Two [Cu(pz*)4(H2O)]2+ units are connected to ClO4 via hydrogen bonds. One lattice water molecule is found in the unit cell of 2 , which forms an one‐dimensional chain via intermolecular hydrogen bonds with the N‐H atom of pz*. In 3 , the oxygen atom of the coordinated water molecule is connected with two C=O groups of two neighbouring maleic acid molecules to form a linear parallelogram structure. Another C=O group of maleic acid forms a hydrogen bond with the N‐H atom of pz* to create a two‐dimensional structure. The spectroscopic and bond properties are also discussed.  相似文献   

6.
Abstract

The crystal structure of tetrakis(N,N′-dimethylthiourea)nickel(II) bromide dihydrate has been determined by three-dimensional x-ray diffraction from 1916 counter-data reflections collected at room temperature.

The structure consists of Ni[SC(NH)2(CH3)2]2+ 4 molecular ions, Br? ions and waters of hydration. The nickel is located on a center of symmetry and is coordinated to four sulfur atoms in a square planar configuration. The waters of hydration and the bromide ions are involved in hydrogen bonding to the N,N′-dimethylthiourea (dmtu) groups. The orientation of the dmtu groups is such that two bond through the sulfur sp2 orbital and the others bond through the π-orbitals of the dmtu group. The Ni-S distances are 2.204 ± 0.002 Å and 2.230 ± 0.002 Å, and the Ni-S-C angles are 106.2 ± 0.2Å and 110.3 ± 0.3°. The dmtu groups are planar except for methyl hydrogens.

The crystals are monoclinic, P21/a with a = 13.424 ± 0.002 Å, b = 12.321 ± 0.005 Å, c = 8.460 ± 0.008 Å β = 107.07 ± 0.05°, ρ0 = 1.67 g cm?3, ρc = 1.66 g cm?3 and Z = 2. The structure was refined by full-matrix least-squares to a conventional R of 0.0466.  相似文献   

7.
Structures of poly(alkylene-1,3-benzenedisulfonamide)s [? HN(CH2)mNH? O2SC6H4SO2? ]n (PMm: 2 ≤ m ≤ 6) were studied by x-ray diffraction and infrared spectroscopy. The crystal structure of PB6 is monoclinic, space group C2/m? C2h3, with a = 7.70 Å, b = 7.76 Å, c (molecular axis) = 14.1 Å, and β = 117°. Two mirror-image molecules repeating with two monomeric units in an identity period 28.2 Å occupy the same lattice site with equal probability. The alkylene chains assume the planar zigzag conformation, which is the structure isomorphous with PB4. An intermolecular hydrogen bond is formed between each NH group and one of the two O = S groups of the corresponding SO2 unit. The c axis tends to tilt from the fiber axis by an inclination angle of about 3° around the b axis.  相似文献   

8.
The reaction between dialkyl acetylenedicarboxylates and NH heterocyclic compounds in the presence of trialkyl phosphite leads to stable phosphorus ylide derivatives in good yields. The x‐ray crystallographic data and theoretical study show that there is a resonance between two bonds of C9P1 and C91O91 in phosphorous ylide 4c . This compound crystallizes in the triclinic system, space group ( ), with the following unit cell parameters: a = 8.7522(3)Å, b = 8.8513(5)Å, c = 18.3469(5)Å, α = 99.1220(10)°, β = 90.954(2)°, γ = 118.792(2)°, Z = 2, and V = 1222.72(9)Å3. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 22:36–43, 2011; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20653  相似文献   

9.
Summary Pyridinium ylide complexes of methylcobaloxime were synthesized by the treatment of an ylide with Co(Hdmg)2 Me(SMe2). The crystal structure of one of the complexes, [Co(Hdmg)2Me C5H5NCHCOPh]C6H6 has been determined by x-ray diffraction techniques. The crystals are monoclinic, space group P21/c, witha = 10.456(5),b = 11.079(4),c = 24.58(1) Å, = 99.58(6), V = 2808 Å3, Z = 4. The Co-C (ylide) bond distance is 2.18 Å and Co-C(methyl) 2.04 Å. C(ylide)-Co-C(methyl) bond angle is 174.9°. The crystal, i.r. and1H n.m.r. data suggest that thetrans-influence of the ylide ligands is larger than that of py, Melm, OH2 or PPh3.  相似文献   

10.
Abstract

[Cp2Fe2(CO)2(μ-CO)(μ-CHP(OPh)3)+][BF? 4] crystallizes in the centrosymmetric monoclinic space group P21/n with a = 12.553(7) Å, b = 16.572(11) Å, c = 15.112(8) Å, β = 100.00(4)°, V = 3096(3) Å3 and D(calcd.) = 1.579 g/cm3 for Z = 4. The structure was refined to R(F) = 5.83% for 1972 reflections above 4σ(F). The cation contains two CpFe(CO) fragments linked via an iron—iron bond (Fe(1)—Fe(2) = 2.544(3)Å), a bridging carbonyl ligand (Fe(1)—C(4) = 1.918(1) Å, Fe(2)—C(4) = 1.946(12)Å) and a bridging CHP(OPh)3 ligand (Fe(1)—C(1) = 1.980(9)Å, Fe(2)—C(1) = 1.989(8)Å). Distances within the μ-CHP(OPh)3 moiety include a rather short carbon—phosphorus bond [C(1)—P(1) = 1.680(10)Å] and P—O bond lengths of 1.550(7)–1.579(6)Å. The crystal is stabilized by a network of F…H—C interactions involving the BF? 4 anion.

[Cp2Fe2(CO)2(μ-CO)(μ-CHPPh3)+][BF? 4], which differs from the previous compound only in having a μ-CHPPh3 (rather than μ-CHP(OPh)3) ligand, crystallizes in the centrosymmetric monoclinic space group P21/c with a = 11.248(5)Å, b = 13.855(5)Å, c = 18.920(7)Å, β = 96.25(3)°, V = 2931(2)Å3 and D(calcd.) = 1.559 g/cm3 for Z = 4. This structure was refined to R(F) = 4.66% for 1985 reflections above 4σ(F). Bond lengths within the dinuclear cation here include Fe(1)-Fe(2) = 2.529(2)Å, Fe(1)—C(3) = 1.904(9) Å and Fe(2)—C(3) = 1.911(8) Å (for the bridging CO ligand) and Fe(1)—C(1P) = 1.995(6) Å and Fe(2)—C(1P) = 1.981(7) Å (for the bridging CHPPh3 ligand). Distances within the μ-CHPPh3 ligand include a longer carbon—phosphorus bond [C(1P)—P(1) = 1.768(6)Å] and P(1)—C(phenyl) = 1.797(7)–1.815(8) Å.  相似文献   

11.
The complex cis‐[RuCl(DMSO)(phen)2]BPh4, where DMSO is dimethylsulfoxide and phen is 1, 10‐phenanthroline, crystallizes in the monoclinic space group P21/c with a = 19.505(4), b = 10.045(2), c = 21.199(4) Å, β = 90.137(4)°, V = 4153(2) Å3, Z = 4, Dcalc = 1.430 g cm—3. The ruthenium coordination geometry is that of a slightly distorted octahedron with a cis‐RuN4ClS arrangement of the ligand donor atoms. The Ru—Cl distance is 2.421(1) Å and the Ru—S distance 2.250(2) Å. The four Ru—N distances are 2.057(6), 2.066(4), 2.073(4), and 2.086(4) Å with the Ru—N bond trans to Cl the second shortest and the Ru—N bond trans to S the longest one.  相似文献   

12.
2-Chlorophenyl methanethiol undergoes air oxidation catalyzed by different selenides and yields the corresponding disulfide 1 in two polymorphic forms, 1a and 1b. In the molecular structures of the two new polymorphs of o,o′-dichloro dibenzyl disulfide, the dihedral angles between the dibenzyl groups are 82.0(1)°, (1a), and 73.7(4)°, (1b), respectively [(1a): P-1, a = 8.424(2) Å, b = 8.838(2) Å, c = 10.5823(19) Å, α = 90.122(18)°, β = 112.19(2)°, γ = 95.19(2)°, V = 725.9(3) Å3; (1b): P21/n, a = 10.5888(10) Å, b = 9.1590(6) Å, c = 15.2489(14) Å, β = 103.072(9)°, V = 1440.6(2) Å3]. MOPAC computational studies yield dihedral angles of 89.6(5)° and 71.9(9)°. Crystal packing is stabilized by weak π-ring (C?H···Cg) intermolecular interactions in both 1a and 1b and by additional weak Cg ··· Cg intermolecular interactions in 1b, which influence the bond distances, bond angles, and torsion angles of the dibenzyl groups in each polymorph. Additional characterization of each polymorph has been carried out by TEM, IR, 1H and 13C NMR spectroscopy, microanalysis, and by FAB mass spectrometry. TEM studies of a sample of 1a show that it contains cigar-shaped crystallites.

Supplemental materials are available for this article. Go to the publisher's online edition of Phosphorus, Sulfur, and Silicon and the Related Elements to view the free supplemental file.  相似文献   

13.
Single crystals of a new barium oxogallate were obtained by growth from a melt at 1500 °C. The compound is monoclinic, with cell parameters a = 17.7447(10) Å, b = 10.6719(5) Å, c = 7.2828(5) Å, β = 98.962(7)°, V = 1362.3(2) Å3. The diffraction pattern shows systematic absences corresponding to the space group P121/c1. The structure was solved by direct methods followed by Fourier syntheses, and refined using a single crystal diffraction data set (R1 = 0.032 for 2173 reflections with I > 2σ(I)). The chemical composition derived from structure solution is Ba4Ga2O7, with a unit cell content of Z = 6. Main building units of the structure are GaO4 tetrahedra sharing one oxygen atom to form Ga2O7 groups. The Ga–O–Ga bridging angle of one of the two symmetrically independent groups is linear by symmetry. The dimers are crosslinked by barium cations coordinated by six to eight oxygen ligands.  相似文献   

14.
Abstract

(TTP) hafnium dichloride, 1, where TTP = meso-5,10,15,20 tetratolyl porphyrin dianion, has been synthesized and spectroscopically characterized as a precursor to 2. Hydrolysis of 1 gives (TTP) hafnium μ-dioxo dimer, 2. (TTP) vanadium oxo complex, 3, can be obtained by hydrolysis of the corresponding chloro complex. Compound 2 has been characterized by spectroscopic and single crystal X-ray diffraction analyses. [(TTP)HfO]2-toluene crystalizes in the space group C2/c, a = 31.906(6) Å, b = 16.864(3) Å, c = 19.180(4) Å, β = 117.52(3)°, V = 9152(3) Å3, dcalcd = 1.369 g/cm3, Z = 8, 6029 unique observed reflections, final R = 0.077. The Hf atom is 1.02 Å from the plane of the porphyrin ring; Hf-O bond lengths are 2.1 Å. The hafnium atoms are 3.06(1) Å from each other and the average Hf-O-Hf angle is 94°. The porphyrin rings are 5.4° from being parallel and the distance between the centers of the porphyrin rings is ~ 5.1 Å. TTPVO·mesitylene, 3, crystallizes from mesitylene in the space group P1, a = 8.365(2), b = 10.320(3), c = 14.380(5) Å, α = 91.91(3), β = 91.44(3), γ = 108.26(2)°, V = 1177.2(6) Å3, dcalcd = 1.27 g/cm3, Z = 1, 1851 observed unique reflections, final R = 0.069. The average V - N distance = 2.016 Å. The coordination geometry around the vanadium is distorted C4V. The V = O group is disordered about the center of inversion. The vanadium atom resides 0.57 Å above the plane of the nitrogens. The (ring center) -V = O angle is 165.9° while the V = O vector is essentially colinear with the vector normal to the plane of nitrogens.  相似文献   

15.
The title reaction gave three known compounds (2, 3 and 4) and two new compounds, CH3SCH2(CF2)2H (5) and I(CF2)2O(CF2)2SO3S+(CH3)3 (6). The structure of 6 was confirmed by X-ray diffraction analysis. The crystals of 6 belong to monoclinic space group P21/C with a = 9.399, b = 15.651, c=10.934Å, β = 94.80° and z = 4. The structure was solved by heavy-atom method and refined by block-diagonal matrix least-squares procedure to a final R of 0.054 for 1999 independent observed reflexions. The S C bonds around the sulphur atom in trimethylsulphonium are pyramidal with the bond lengths of 1.814 Å, 1.800Å and 1.818 Å and the bond angles C-S-C of 101.06°, 101.52° and 102.53°. The distances of the sulphur atom in trimethylsulphonium to three oxygen atoms in the sulphonate radical are 3.79 Å, 3.64 Å and 3.34 Å respectively. These distances are out of the range of the normal S-O bond length. The structure consists of trimethylsulphonium cations and 5-iodo-3-oxaoctafluoropentane-sulphonate anions.  相似文献   

16.
The compounds Ba4Ag2Si6, Eu4Ag2Si6, and Ca4Ag2Si6, prepared from the elements at 1273 K (the components in inner corundum crucibles are enclosed in sealed quartz ampoules), are brittle semiconductors with silvery luster. They react slowly with acids liberating hydrogen. Ba4Ag2[Si6] and Eu4Ag2[Si6] crystallize like Ba4Li2[Si6] (space group Fddd (No. 70); a = 8.613 Å, b = 14.927 Å, c = 19.639 Å, and a = 8.420 Å, b = 14.585 Å, c = 17.864 Å, respectively), whereas Ca4Ag2[Si6] represents a new structure type (space group Fmmm (No. 69); a = 8.315 Å, b = 14.391 Å, c = 8.646 Å). The three compounds are Zintl phases with the formal charges M2+, Ag+ and [Si6]10–. The mean bond lengths d(Si–Si) = 2.335–2.381 Å in the 10π‐Hückel arene [Si6]10– as well as d(Ag–Si) = 2.464–2.595 Å vary with the size of the M2+ cations. The chemical bonding was analyzed in terms of the Electron Localization Function (ELF) and compared with the bonding in related systems (Ce4Co2Si6).  相似文献   

17.
The unit cell dimensions of isotactic polyvinylcyclopropane were determined, based on crystalline, oriented fiber and film samples. Two structures were found: (1) a hexagonal structure with a = 13.6 Å, c = 6.48 Å, 31 helix, space group P31 and P32, ρ(calc) = 0.9805 g/cm3, ρ(obs) = 0.975 g/cm3; (2) a tetragonal structure with a = 15.21 Å, c = 20.85 Å, 103 helix, space group I4 , ρ(calc) = 0.926 g/cm3.  相似文献   

18.
Hydrated alkaline earth metal salts of 5‐amino‐1H‐tetrazole ( B ) were synthesized by reaction of B with a suitable metal hydroxide in water. All compounds were fully characterized by analytical (elemental analysis and mass spectrometry) and spectroscopic (IR, Raman, 1H and 13C NMR) methods. Additionally, the crystal structures of the magnesium [ 1· 4H2O: triclinic, P$\bar {1}$ , a = 5.940(1) Å, b = 7.326(1) Å,c = 7.383(1) Å, α = 106.10(1)°, β = 106.51(1)°, γ = 111.85(1)°, V = 258.0(1) Å3], calcium [ 2· 6H2O: monoclinic, P21/m, a = 6.904(1) Å,b = 6.828(1) Å, c = 10.952(2) Å, β = 94.50(2)°, V = 514.6(1) Å3], and strontium [ 3· 6H2O: orthorhombic, Cmcm, a = 6.987(1) Å, b = 28.394(2) Å, c = 7.007(1) Å, V = 1390.3(2) Å3] were determined by low temperature X‐ray diffraction. Additionally, the (gas phase) structure of the 5‐amino‐1H‐tetrazole anion ([ B ]) was also studied by natural bond orbital (NBO) analysis [B3LYP/6‐31+G(d,p)]. Lastly, standard tests were used to determine the sensitivity towards impact, friction, and electrostatic discharge of the compounds and the thermal stability was assessed by differential scanning calorimetry (DSC) analysis.  相似文献   

19.
Peroxodiphosphates of alkali metals can be prepared from K4P2O8, which is synthesized by electrolysis, in metathesis reactions with the corresponding perchlorates. Single crystals have been obtained by diffusion of methanol into aqueous solutions of the peroxodiphosphates. The crystal structures of Li4P2O8·4H2O (P21/n; a = 8.057(2) Å, b = 5.074(1) Å, c = 12.288(3) Å, β = 100.53(2)°; V = 493.9(2) Å3; Z = 2), Na4P2O8·18H2O (at 130 K: P61; a = 9.0984(14) Å, c = 49.926(13) Å; V = 3579.2(12) Å3; Z = 6) and K4P2O8 (P21/c; a = 5.9041(15) Å, b = 10.254(2) Å, c = 7.356(2) Å, β = 99.05(3)°; V = 439.79(18) Å3; Z = 2) have been determined by X‐ray diffraction. In the Li salt the cations are tetrahedrally coordinated by one water molecule and three oxygen atoms of the anions, whereas the Na salt is characterized by binuclear [Na2(H2O)9]2+ complexes. At low temperatures, the latter undergoes a phase transition from a structure with disordered anions to a completely ordered phase. K4P2O8 is solvent‐free and exhibits irregular cation coordination. The structure of the peroxodiphosphate anion is very similar in all compounds; the mean O–O distance is 1.49(1) Å. In addition, the structure determination of K4(HPO4)2·3H2O2 (P21/n; a = 6.076(1) Å, b = 6.579(1) Å, c = 17.215(2) Å, β = 99.73(1)°; V = 678.26(17) Å3; Z = 2), which can be mistaken for K4P2O8, is presented.  相似文献   

20.
Abstract

The thermal decomposition products of two substituted imino-1,2,4-dithiazoles have been studied by single crystal x-ray analysis. Both products crystallize in space group P21/c with four molecules per unit cell. The first product, obtained from 5-(dimethylamino)-3-(methylimino)-1,2,4-dithiazole has cell dimensions of a=9.922(8) Å, b=12.052(11) Å, c=13.358(12) Å and β=104.9(1)°. The molecule is made up of two planar segments related by an extremely large twist (?154°) about a C?N double bond. The results from this study have also contributed further information in the area of nonbonded interactions between ring and thione sulfur atoms. The second product, from 5-(dimethylamino)-3(phenylimino)-1,2,4-dithiazole was shown to be an ordered 1:1 complex of the starting material and one of its isomers. The cell dimensions are a=12.420(6) Å, b=8.840(9) Å, c=22.276(22) Å and β= 112.2(1)°. The different molecules are linked by an inter molecular NH… N hydrogen bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号