首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The complexation reactions between the macrocyclic polyethers dibenzo-18-crown-6, benzo-18-crown-6, benzo-15-crown-5 and polyethers bearing a stilbene unit with alkali metal and silver cations have been studied conductometrically in nitromethane. The formation constants of 1 : 1 and 1 : 2 (metal : ligand) complexes were determined and found to decrease with increasing cation diameter. The stability of the stilbene crown – metal cation complexes is lower than for complexes of other investigated crown ethers with analogous cations. There seem to be some effects of double bond-silver ion interactions.  相似文献   

2.
The complexation behavior of nicotinamide with macrocyclic polyethers viz, 15-crown-5, benzo-15-crown-5, 18-crown-6, dicyclohexano-18-crown-6, dibenzo-18-crown-6, dibenzo-24-crown-8, 1,4,7,10,13,16-hexathiacyclooctadecane, monoaza-15-crown-5, 1,4,10-trioxa-7,13-diaza-cyclopentadecane, 5,6,14,15-dibenzo-1,4-dioxa-8,12-diazacyclopentadecane, 7,16-dibenzyl-1,4,10,13-tetraoxa-7,16-diazacyclooctadecane, 1,4,7-tritosyl-1,4,7-triazacyclononane, 1,4,7,10-tetratosyl-1,4,7,10-tetraazacyclododecane and 1,4,8,11-tetraazacyclooctadecane has been studied in dimethylsulphoxide (DMSO) and 90% DMSO + water using differential pulse polarography and complexation constants have been reported. Nicotinamide forms stable complexes with six-membered coronand rings of the crown ethers. The nature of the atoms (oxygen, sulfur and nitrogen) in the coronand ring is observed to affect the stability of the complex. The stoichiometry and stability constants of the complexes were determined by monitoring the shifts in peak potentials of the polarograms of nicotinamide against the ligand concentration. The Gibbs free energy change turns out to be negative at 25°C, which indicates the spontaneity of the binding of nicotinamide with crown ethers. The mole ratio of nicotinamide to the macrocyclic compound was also determined and it was found that the complexes were of 1:1 type with respect to crown ethers. The tendency of nicotinamide to form complexes with macrocycles is found to be greater in DMSO than in DMSO + water.  相似文献   

3.
The eco-friendly synthesis, spectroscopic (IR, MS, 1H and 13C NMR) study and biological (cytostatic, antiviral) activity of sodium and potassium benzeneazophosphonate complexes, obtained by reaction in the solid state under microwave irradiation of the alkali salts of ethyl [α-(4-benzeneazoanilino)-N-benzyl]phosphonic acid and [α-(4-benzeneazoanilino)-N-4-methoxybenzyl]phosphonic acid with crown ethers containing 18-membered (dibenzo-18-crown-6 and bis(4′-di-tert-butylbenzo)-18-crown-6), 24-membered (dibenzo-24-crown-8) and 30-membered (dibenzo-30-crown-10) macrocyclic rings, have been described. The simple work-up solvent free reaction is an efficient green procedure for the formation of mononuclear crown ether complexes in which the sodium/potassium ion is bound to oxygen atoms of the macrocycle and the phosphonic acid oxygen. The free crown ethers, alkali benzeneazophosphonate salts and their complexes were evaluated for their cytostatic activity in vitro against murine leukemia L1210, murine mammary carcinoma FM3A and human T-lymphocyte CEM and MT-4 cell lines, as well as for their antiviral activity against a wide variety of DNA and RNA viruses. The investigated compounds showed no specific antiviral activity, whereas all the free crown ethers and their complexes demonstrated cytostatic activity, which was especially pronounced in the case of bis(4′-di-tert-butylbenzo)-18-crown-6 and its complexes.  相似文献   

4.
Lokman Torun 《Tetrahedron》2005,61(35):8345-8350
Lariat ether carboxylic acids of structure CECH2OCH2C6H4-2-CO2H with crown ether (CE) ring sizes of 12-crown-4, 15-crown-5 and 18-crown-6 are prepared and converted into alkali metal-lariat ether carboxylate complexes. Absorptions for the diastereotopic benzylic protons in the 1H NMR spectra of the complexes in CDCl3 are utilized to probe the extent of side arm interaction with the crown ether-complexed metal ion as a function of the crown ether ring size and identity of the alkali metal cation.  相似文献   

5.
Abstract

Sixteen new diazadi(or tri)thiacrown ethers containing two 5-substituent(or 2-methyl)-8-hydroxyquino-lin-2-ylmethyl side arms have been prepared by a three-step process. First, the appropriate bis(α-chloroamide)s were treated with five dimercaptans in base to form macrocyclic di(or tri)thiadiamides. The macrocyclic diamides were reduced by BH3-THF to form 1,7-diaza-4-oxa-10,13-dithia-cyclopentadecane (11); 1,7-diaza-4,13-dioxa-10,16-dithiacyclooctadecane (12); 1,7-diaza-4-oxa-10,13,16-trithiacyclooctadecane (13); 1,7-diaza-4,13,16-trioxa-10,19-dithiacycloheneicosane (14); and 1,10-diaza-4,7-dioxa-13,16-dithiacyclooctadecane (15). The diazadi(or tri)thiacrown ethers were then treated with 8-hydroxyquinoline, 8-hydroxy-5-methylquinoline, 5-chloro-8-hydroxyquinoline, and 8-hydroxyquinaldine in the presence of paraformal-delyde in refluxing benzene to form the bis(8-hydroxy-5-substituent(or 2-methyl)quinolin-7-ymethy)-substituted diazadi(or tri)thiacrown ethers 16-31. The crown ethers containing two 8-hydroxyquinoline or 8-hydroxyquinaldine side arms proved to be mixtures of about 90% bis(8-hydroxyquinolin-7-ylmethyl)-substituted crown ethers; 9% mixed (8-hydroxyquinolin-7-ymethyl)-substituted and (8-hydroxyquinolin-5-ylmethyl)-substituted crown ethers; and 1% bis(8-hydroxyquinolin-5-ylmethyl)-substituted crown ethers.  相似文献   

6.
The crown ethers dibenzo-16-crown-4 and dibenzo-18-crown-5 and a diaryl polyether were complexed by the chromium tricarbonyl group for the purpose of selective functionalization. This complexation did indeed permit exclusive functionalization of the complexed ring. CHO and CH2OH functionalities were introduced ortho to the ether group. It was noted that the nature of the two ether chains had a strong influence on the regioselectivity of the functionalization, which occurred preferentially on the side with the polyether chain. Photochemical decomplexation produced functionalized organic crown ethers.  相似文献   

7.
Photoinduced recoordination of Ca2+ complexes of the photochromic azacrown ethers is studied by the density functional method. The study included model arylazacrown ethers containing various acceptor groups in the aromatic ring in the para position to the azacrown ether moiety and a real azacrown-containing styryl dye. It is found that both free azacrown ethers and their complexes can adopt two types of conformations: (1) axial conformations, in which the aromatic ring axis passing through the crown ether nitrogen Ncr and the opposite atom of the aromatic ring is perpendicular to the root-mean-square (RMS) plane of the crown ether (least-squares fitted plane for all the crown ether atoms), and (2) equatorial conformations, in which the aromatic ring axis only slightly deflects from the RMS plane of the crown ether. In the equatorial conformers, the metal cation is coordinated only to the O atoms of the azacrown ether cycle, the metal—nitrogen bond is broken, and Ncr is conjugated with the aromatic ring. In the axial conformers, the metal cation is additionally coordinated to Ncr. It is found that the presence of an acceptor group bearing a formal positive charge decreases the relative energy of the equatorial conformer and favors metal—nitrogen bond dissociation, which results in the recoordination of the metal cation. However, a long distance between the charged group and Ncr has the reverse effect. The photoinduced recoordination observed in the alkaline-earth metal complexes of the photochromic azacrown ethers is explained by the transitions between the axial and equatorial conformers facilitated by the charge transfer in the excited state of the complex.  相似文献   

8.
Redox active films have been generated via electrochemical reduction in a solution containing palladium(II) acetate and fulleropyrrolidine with covalently linked crown ethers, viz., benzo-15-crown-5 and benzo-18-crown-6. In these films, fullerene moieties are covalently bonded to palladium atoms to form a polymeric network. Films show ability to coordinate alkali metal cations from the solution. Therefore, in solutions containing salts of alkali metal cations, benzo-15-crown-5-C60/Pd and benzo-18-crown-6-C60/Pd films are doped with cations coordinated by crown ether moiety and anions of supporting electrolyte which enter the film to balance positive charge. These films are electrochemically active in the negative potential range due to the reduction of the fullerene moiety. Reduction of the polymer is accompanied by the transport of supporting electrolyte ions between solution and solid phase. In solution containing alkali metal salts, the process of film reduction is accompanied by the transport of anions from the film to the solution. In the presence of tetra(alkyl)ammonium salts, transport of cations from the solution to the film takes place during the polymer reduction.  相似文献   

9.
A simple and efficient synthetic protocol for an easy access of carbohydrate-linked crown ethers from cheap and readily available D-glucose in good yields has been devised. The base-mediated cyclization of sugar-linked bis-iodo podands in CH3CN with amines, including ethylamine and furfurylamine afforded the novel chiral monoaza-15-crown-5-type macrocyclic crown ethers anellated to 3-O-benzyl-1,2-O-isopropylidene-α-D-glucofuranose and 3-O-benzyl-1,2-O-isopropylidene-α-D-allofuranose. The glucose-based crown ethers have been characterized by spectroscopy techniques including IR, 1H NMR, and 13C NMR.  相似文献   

10.
In this paper, the nitrogen position isomers of diaza-18-crown-6, diaza-15-crown-5, diaza-12-crown-4, and their complexes with Na+ ion are studied by the density functional theory. Their stable structures are identified by geometry optimization without strict for their geometry. The binding capability that reflects the selectivity of these diazacrown ethers to metallic ions is estimated by the binding energy. The position effects of nitrogen on the stability of these complexes are also investigated by the explicit natural bond orbital and atoms-in-molecule analysis. It is found that different nitrogen position in crown ring will result in different relative energy. To those diazacrown ethers under consideration, the calculation results show that 1,10-diaza-4,7,13,16-tetraoxacyclooctadecane, 1,4-diaza-7,10,13-trioxacyclopentadecane, and 1,7-diaza-4,10-dioxacyclododecane exhibit higher metal binding selectivity than their corresponding nitrogen position isomers, respectively. Clearly, the position of nitrogen plays an important role in the selectivity of diazacrown ethers to metal ions in the system involved. This work will be help for the material design of ionic recognition and other related fields.  相似文献   

11.
Twenty-six new lariat ether carboxylic and hydroxamic acids based upon dibenzo-13-crown-4, dibenzo-14-crown-4, dibenzo-16-crown-5 and dibenzo-19-crown-6 ring systems are synthesized and the solid-state structure for a dibenzo-19-crown-6 lariat ether hydroxamic acid is determined. The efficiency and selectivity for lanthanide ion extraction into chloroform by these proton-ionizable lariat ethers is strongly influenced by the crown ether ring size, lipophilic group attachment site and identity of the acidic function. In general, the lariat ether hydroxamic acids were more efficient and selective lanthanide ion extractants than the corresponding lariat ether carboxylic acids. The 1H nmr and ir binding studies indicate that both the macrocyclic polyether unit and the proton-ionizable group are involved in lanthanide ion complexation.  相似文献   

12.
程维娜  胡新根  邵爽 《物理化学学报》2013,29(10):2114-2122
利用等温滴定微量热法测定了298.15 K时12-冠-4、15-冠-5、18-冠-6和4,13-二氮杂-18-冠-6四种冠醚在纯水及不同质量分数(w=0-0.3)的N,N-二甲基甲酰胺(DMF)+H2O混合物中的稀释焓, 根据McMillan-Mayer理论计算得到相应的焓对作用系数(hxx). 实验发现, hxx均为较大的正值, 表明在冠醚-冠醚自相互作用中疏水性成分占绝对优势, 主要表现为两种机制: (1) 当疏水-疏水作用发生时, 共球交盖使得水结构形成减少, 对hxx有正的贡献; (2) 当疏水-亲水作用发生时, 共球交盖使得水结构破坏增加, 对hxx有正的贡献. 此外, 四种冠醚hxx的大小关系为: hxx(18-冠-6)>hxx(4,13-二氮杂-18-冠-6)≈hxx(15-冠-5)>hxx(12-冠-4), 表明冠醚环越大, 疏水-疏水作用越强, 存在显著的大环疏水效应.  相似文献   

13.
A number of N-alkylnitrobenzoaza-15-crown-5 with the macrocycle N atom conjugated with the benzene ring were obtained. The structural and complexing properties of these compounds were compared with those of model nitrobenzo- and N-(4-nitrophenyl)aza-15-crown-5 using X-ray diffraction, 1H NMR spectroscopy, and DFT calculations. The macrocyclic N atom of benzoazacrown ethers are characterized by a considerable contribution of the sp3-hybridized state and a pronounced pyramidal geometry; the crownlike conformation of the macrocycle is preorganized for cation binding, which facilitates complexation. The stability constants of the complexes of crown ethers with the NH4 +, EtNH3 +, Na+, K+, Ca2+, and Ba2+ ions were determined by 1H NMR titration in MeCN-d3. The most stable complexes were obtained with alkaline-earth metal cations, which is due to the higher charge density at these cations. The characteristics of the complexing ability of N-alkylnitrobenzoaza-15-crown-5 toward alkaline earth metal cations are comparable with analogous characteristics of nitrobenzo-15-crown-5 and are much better than those of N-(4-nitrophenyl)aza-15-crown-5.  相似文献   

14.
A series of double-armed benzo-15-crown-5 lariats (3–8) have been synthesized by the reaction of 4′, 5′-bis(bromomethyl)-benzo-15-crown-5 (2) with 4-hydroxybenzaldehyde, phenol, 4-chlorophenol, 4-methoxyphenol, 2-hydroxybenzaldehyde, and 4-acetamidophenol in 43 ~ 82% yields, respectively. The complex stability constants (K S) and thermodynamic parameters for the stoichiometric 1:1 and/or 1:2 complexes of benzo-15-crown-5 1 and double-armed crown ethers 3–8 with alkali cations (Na+, K+, Rb+) have been determined in methanol–water (V/V=8:2) at 25 °C by means of microcalorimetric titrations. As compared with the parent benzo-15-crown-5 1, double-armed crown ethers 3–8 show unremarkable changes in the complex stability constants upon complexation with Na+, but present significantly enhanced binding ability toward cations larger than the crown cavity by the secondly sandwich complexation. Thermodynamically, the sandwich complexations of crown ethers 3-8 with cations are mostly enthalpy-driven processes accompanied with a moderate entropy loss. The binding ability and selectivity of cations by the double-armed crown ethers are discussed from the viewpoints of the electron density, additional binding site, softness, spatial arrangement, and especially the cooperative binding of two crown ether molecules toward one metal ion.  相似文献   

15.
A series of crown ether phosphonic acid monoethyl esters with crown ether ring size variation from 12-crown-4 to 24-crown-8 is used in bulk chloroform membranes to separate alkali metal cations from mixtures. Selective proton-coupled transport of alkali metal cations from weakly alkaline aqueous phases is achieved. With individual ionizable crown ether carriers, transport selectivity for Li+, Na+, K+, and Rb+-Cs+ is achieved. A closely related lipophilic phosphonic acid monoethyl ester derivative with a cyclohexyl unit in place of the crown ether exhibits transport selectivity for Li+. However, the corresponding phosphonic acid diethyl ester is devoid of transport activity. Effects of structural variation within the carrier upon the selectivity and efficiency of competitive alkali metal cation transport are assessed.  相似文献   

16.
Crown ethers are preferential solvated by organic solvents in the mixtures of water with formamide, N-methylformamide, acetonitrile, acetone and propan-1-ol. In these mixed solvents the energetic effect of the preferential solvation depends quantitatively on the structural and energetic properties of mixtures. The energetic properties of the mixtures of water with hydrophobic solvents (N,N-dimethylformamide, dimethylsulfoxide, N,N-dimethylacetamide, hexamethylphosphortriamide) counteract the preferential solvation of the crown ether molecules. The effect of the hydrophobic and acid-base properties of the mixture of water with organic solvent on the solvation of 12-crown-4, 15-crown-5, 18-crown-6 and benzo-15-crown-5 ethers was discussed. The solvation enthalpy of one -CH2CH2O- group in water, N,N-dimethylformamide and hexamethylphosphortriamide is equal to −24.21, −16.04 and −15.91 kJ/mol, respectively. The condensed benzene ring with 15-crown-5 ether molecule brings about an increase in the exothermic effect of solvation of the crown ether in the mixtures of water with organic solvent.  相似文献   

17.
Five bis(benzo-15-crown-5) derivatives connected with different bridge chains were synthesized as neutral carriers in K+-selective electrodes. Potassium ion-selective PVC membrane electrodes based on these bis(crown ether)s were prepared using dibutyl phthalate (DBP) and dioctyl phthalate (DOP) as plasticizers of the PVC membrane. The selectivity coefficients (K M n+:K K+) for various alkali and alkaline-earth metal ions were measured. The electrodes based on the bis(crown ether)s are more selective for K+ than those based on monomeric crown ethers. The selectivity of one of the prepared potassium selective electrodes was higher than that of the electrode based on valinomycin and three of them were stable over a wide pH range.  相似文献   

18.
A molecular mechanics (MM) analysis is carried out on complexes of crown ethers CH2(OCH2CH2)nCH2O, 12-crown-4 (n=3), 15-crown-5 (n=4), 18-crown-6 (n=5), 24-crown-8 (n=7), and 30-crown-11 (n=9) to determine the nature of the selectivity shown by these ligands for metal ions on the basis of metal ion size. The MM program used is SYBYL, and M-O bonds are represented using a covalent model, i.e. the M-O bonds are modelled with ideal M-O bond lengths and force constants. The previously used technique of calculating strain energy as a function of M-O bond length is used for all the complexes, and also the complexes of the non-macrocyclic polyethylene glycol analogues. It is concluded that the crown ethers fall into three groups with regard to selectivity for metal ions. Group one consists of the smaller macrocycles such as 12-crown-4 and 15-crown-5, where metal ions generally are too large to enter the cavity of the macrocycle, and the metal ion is coordinated lying outside the plane of the donor atoms of the ligand. Here factors that control selectivity are the same as in non-macrocyclic ligands, chiefly the size of the chelate ring. Group 2 contains only 18-crown-6 of the ligands studied here. 18-Crown-6 complexes have three important conformers, one of which, theD 3d , shows sharp size match selectivity, preferring metal ions with M-O bond lengths of about 2.9 . The other two conformers are adopted by metal ions too small for theD 3d conformer, and are more flexible, exerting little size-match selectivity. These other two conformers are of higher energy than theD 3d conformer for metal ions with M-O bond lengths greater than 2.55 . Thus, a genuine size match selectivity is found for K+ with 18-crown-6. With an ideal M-O bond length of 2.88 , K+ fits the cavity of theD 3d conformer of 18-crown-6 very closely. The third group consists of very large macrocycles such as 24-crown-8 and 30-crown-10. These enfold the metal ion in extremely folded conformations, but may, as does 30-crown-10, exert considerable selectivity for metal ions on the basis of their size by virtue of the conformation resulting in a set of torsional angles in the ring atoms of the macrocycle which confer considerable rigidity on the ligand.  相似文献   

19.
The structure of vinyl ethers determines the direction of the C-O bond cleavage by alkalide K, K+(15-crown-5)21. Highly reactive organopotassium compounds are intermediate products formed in the system containing phenyl vinyl ether, butyl vinyl ether, ethylene glycol butyl vinyl ether or triethylene glycol methyl vinyl ether. Vinylpotassium and butylpotassium react with 15-crown-5. The oxacyclic ring of the latter is opened in this case. Organopotassium ethers possessing CH2CH2O units eliminate ethylene. It results in various potassium alkoxides. The reaction of 1 with butyl vinyl ether occurs very slow as compared to other vinyl ethers and most of other reagents used till now.  相似文献   

20.
Artificial macrocyclic polyethers were synthesized and applied as neutral carriers for ion-selective PVC membrane electrodes, ion-chromatographic packing materials, extractants and adsorbents for ion separation, coating materials for piezoeletrical membrane sensors for organic species, and ion-transport carriers through liquid membranes. Ion-selective electrodes such as those for K+ Na+, UO22+, Cs+, Pb2+, Fe3+, Hg2+ and Ag+ ions based on crown ether-phosphotungstic acid (PW) precipitates and dithio crown ethers respectively were prepared and showed good sensitivity and selectivity. Crown ether-PW precipitates were applied as adsorbents of rare-earth ions and some common heavy-metal ions. Some rare-earth ions were easily extracted with crown ethers, especially 15-crown-5. Poly(stytene/divinyl benzene) cryptand-22 resin was synthesized and applied as a bifunctional stationary phase of ion chromatography to separate bom cations and anions, even some organic carboxylate geometric isomers. Crown ethers such as mono-benzo-15-crown-5 was successfully applied as a coating material on piezoelectric quartz membrane sensors for some organic species. The oscillation frequency of the crown-ether quartz-membrane sensor was sensitive to organic vapours such as amines and alcohols. Upon adsorption of organic species on the crown-ether quartz membrane, the oscillation frequency of the sensor decreased obviously. Special crown ether such as dibenzo-16-crown-5-oxyacetic acid, decyl-cryptand-22 and 1, 4-dihydro-pyridine-18-crown-5 were synthesized and successfully applied as ion-transport carriers (ionophores) for transport of Na+ K+ and Mg2+ ions through liquid membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号