首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Higher order boundary layer effects for natural convection flow over a horizontal plate prescribed with uniform heat flux is presented. Using the method of matched asymptotic expansions the three terms in inner and outer expansions have been obtained. It is shown that the contribution of the eigen functions to the three term inner expansions is identically zero.
Einflüsse höherer Ordnung bei freier Konvektion über einer gleichmäßig beheizten horizontalen Oberfläche
Zusammenfassung Es werden Grenzschichteinflüsse höherer Ordnung auf die freie Konvektionsströmung über einer horizontalen Platte bei gleichmäßigem Wärmestrom dargestellt. Mit Hilfe der Methode der angepaßten asymptotischen Entwicklungen wurden die drei Terme der inneren und äußeren Entwicklung hergeleitet. Es wird gezeigt, daß der Beitrag der Eigenfunktionen zu den drei inneren Entwicklungen identisch Null ist.
  相似文献   

2.
 The effect of lateral mass flux on mixed convection heat and mass transfer in a saturated porous medium adjacent to an inclined permeable surface is analyzed. A similarity solution is obtained when surface temperature and concentration, free stream velocity and injection/suction velocity of fluid are prescribed as power functions of distance from the leading edge. The cases when the flow and buoyancy forces are in the same and opposite directions are discussed both for aiding and opposing buoyancy effects. The governing parameters are the mixed convection parameter Gr, the Lewis number Le, the buoyancy ratio N, the lateral mass flux parameter f w, representing the effects of injection or withdrawal of fluid at the wall, and λ which specifies three cases of the inclined plate. The interactive effect of these parameters on heat and mass transfer rates are presented. It is observed that the diffusion ratio (Le) has a more pronounced effect on concentration field than on flow and temperature fields. It is found that the rates of heat and mass transfer increase with suction and decrease with injection of the fluid. Received on 31 August 2000 / Published online: 29 November 2001  相似文献   

3.
Kumari  M.  Pop  I.  Nath  G. 《Heat and Mass Transfer》1990,25(3):155-159
The boundary layer in free convection above a uniformly heated semi-infinite flat plate, which is inclined at a small angle to the horizontal in porous media is discussed. For positive inclinations of the plate, series solutions, one valid near the leading edge and the other at large distances from it, are obtained. When the inclination is negative, a series solution valid near the leading edge is again obtained. A step-by-step numerical technique, based on a scheme by Keller, is used to complete the solution in the region where neither series is adequate. For the negative inclinations of the plate, the boundary layer separates and a region of reverse flow develops.Hier wird die Grenzschicht bei freier Konvektion in einem porösem Medium oberhalb einer gleichmäßig beheizten, halbunendlichen flachen Platte, die mit einem kleinen Winkel gegen die Horizontale geneigt ist, untersucht. Für positive Neigungen der Platte sind zwei Reihenlösungen, eine gültig für den Anlaufbereich und die andere für einen großen Abstand davon, emittelt worden. Eine gültige Reihenlösung für eine negative Neigung in der Nähe des Anlaufbereiches ist ebenfalls bestimmt worden.Es ist ein schrittweises numerisches Verfahren, das auf der Methode von Keller basiert, benützt worden, um das Ergebnis im Bereich, in welchem keine Reihenansätze existieren, zu vervollständigen. Für negative Neigungen der Platte zerteilt sich die Grenzschicht und es entwickelt sich ein Bereich von Rückströmung.  相似文献   

4.
The problem of natural convection in an inclined rectangular porous layer enclosure is studied numerically. The enclosure is heated from one side and cooled from the other by a constant heat flux while the two other walls are insulated. The effect of aspect ratio, inclination angle and Rayleigh number on heat transfer is studied. It is found that the enclosure orientation has a considerable effect on the heat transfer. The negative orientation sharply inhibits the convection and consequently the heat transfer and a positive orientation maximizes the energy transfer. The maximum temperature within the porous medium can be considerably higher than that induced by pure conduction when the cavity is negatively oriented. The peak of the average Nusselt number depends on the Rayleigh number and the aspect ratio. The heat transfer between the two thermally active boundaries is sensitive to the effect of aspect ratio. For an enclosure at high or low aspect ratio, the convection is considerably decreased and the heat transfer depends mainly on conduction.  相似文献   

5.
The effect of the Hall current on the magnetohydrodynamic (MHD) natural convection flow from a vertical permeable flat plate with a uniform heat flux is analyzed in the presence of a transverse magnetic field. It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field. The boundary layer equations are reduced to a suitable form by employing the free variable formulation (FVF) and the stream function formulation (SFF). The parabolic equations obtained from FVF are numerically integrated with the help of a straightforward finite difference method. Moreover, the nonsimilar system of equations obtained from SFF is solved by using a local nonsimilarity method, for the whole range of the local transpiration parameter ζ. Consideration is also given to the regions where the local transpiration parameter ζ is small or large enough. However, in these particular regions, solutions are acquired with the aid of a regular perturbation method. The effects of the magnetic field M and the Hall parameter m on the local skin friction coefficient and the local Nusselt number coefficient are graphically shown for smaller values of the Prandtl number Pr (= 0.005, 0.01, 0.05). Furthermore, the velocity and temperature profiles are also drawn from various values of the local transpiration parameter ζ.  相似文献   

6.
The effect of the Hall current on the magnetohydrodynamic (MHD) natural convection flow from a vertical permeable flat plate with a uniform heat flux is analyzed in the presence of a transverse magnetic field.It is assumed that the induced magnetic field is negligible compared with the imposed magnetic field.The boundary layer equations are reduced to a suitable form by employing the free variable formulation (FVF) and the stream function formulation (SFF).The parabolic equations obtained from FVF are numer...  相似文献   

7.
The paper investigates the effect of radiation on Darcy's buoyancy induced flow of an optically dense viscous incompressible fluid along a heated inclined flat surface maintained at uniform temperature placed in a saturated porous medium with Rosseland diffusion approximation employing the implicit finite difference method together with Keller box elimination technique. Both the streamwise and normal components of the buoyancy force are retained in the momentum equations. The numerical results show that as the buoyancy parameter, ξ, increases the local Nusselt number increases. The results for the locally nonsimilar solutions are compared with the locally similar solutions for small angle of inclination and approximate similar solutions along vertical surface. The effect of the conduction-radiation parameter, R d , and the surface temperature excess ration, θ w , on the local Nusselt number, the tangential velocity distribution and the temperature distribution are also shown graphically.  相似文献   

8.
An analysis is performed to study the flow and heat transfer characteristics of laminar mixed convection boundary layer flows from inclined (including horizontal and vertical) surfaces embedded in a saturated porous medium with constant aiding external flows and uniform surface temperature. Both the streamwise and normal components of the buoyancy forces are retained in the momentum equations. Nondimensionalization of the boundary layer equations results in the following three governing parameter: (1)Gr/Re, the ratio of the Grashof number to the Reynolds number; (2)Pe x =Re x Pr, the Peclet number; (3) φ, the angle of inclination from the horizontal. The resulting nonsimilar equations are solved by an efficient implicit finite-difference scheme. Numerical results are presented for flows with different values ofGr/Re in the range of 0 to 50, over a wide range of the Peclet numbersPe x, and various values of φ ranging from 0 to 90 degrees. It is found that the local surface heat transfer rate increases with increasing the local Peclet number. In addition, as the plate is tilted from the horizontal to the vertical orientation, the local Nusselt number increases for a given Peclet number and the effect of the buoyancy force on the surface heat transfer rate increases.  相似文献   

9.
This paper proposed a proper inclination parameter and transformation variables for the analysis of free convection from an inclined plate with uniform surface heat flux to fluids of any Prandtl number. Very accurate numerical results and a simple correlation equation are obtained for arbitrary inclination from the horizontal to the vertical and for 0.001 Pr. Maximum deviation between the correlated and calculated data is less than 1.2%.
Freie Konvektion an einer beliebig geneigten Platte mit erheblicher Wärmestromdichte an der Oberfläche
Zusammenfassung Für die Berechnung von freier Konvektion von Fluiden mit beliebiger Prandtl-Zahl an einer geneigten Platte mit einheitlicher Wärmestromdichte an der Oberfläche werden ein zweckmäßiger Neigungsparameter und Transformationsvariablen eingeführt. Sehr genaue numerische Ergebnisse und eine einfache Korrelationsgleichung wurden für beliebige Neigungen zwischen der Horizontalen und der Vertikalen und für 0.001Pr erhalten. Die größte Abweichung zwischen Korrelations- und berechneten Daten liegt bei weniger als 1.2%.

Nomenclature f reduced stream function - g gravitational acceleration - h local heat transfer coefficient - k thermal conductivity - Nu local Nusselt number - p static pressure difference - Pr Prandtl number - q w wall heat flux - Ra* modified local Rayleigh number,g(q w x/k)x 3/ - T fluid temperature - T temperature of ambient fluid - u velocity component inx-direction - v velocity component iny-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra* |sin|)1/5/( Ra* cos)1/6 - ( Ra* cos)1/6+( Ra*|sin|)1/5 - (y/x) - dimensionless temperature, (TT )/(q w x/k) - kinematic viscosity - [1+( Ra* cos)1/6/( Ra*|sin|)1/5]–1 - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of inclination measured from the horizontal - stream function - dimensionless static pressure difference, p x 2/ 4  相似文献   

10.
The problem of determination of the turbulence onset in natural convection on heated inclined plates in an air environment has been experimentally revisited. The transition has been detected by using hot wire velocity measurements. The onset of turbulence has been considered to take place where velocity fluctuations (measured through turbulence intensity) start to grow. Experiments have shown that the onset depends not only on the Grashof number defined in terms of the temperature difference between the heated plate and the surrounding air. A correlation between dimensionless Grashof and Reynolds numbers has been obtained, fitting quite well the experimental data.  相似文献   

11.
This paper presents a theoretical and numerical investigation of the natural convection boundary-layer along a vertical surface, which is embedded in a porous medium, when the surface heat flux varies as (1 +x 2)), where is a constant andx is the distance along the surface. It is shown that for > -1/2 the solution develops from a similarity solution which is valid for small values ofx to one which is valid for large values ofx. However, when -1/2 no similarity solutions exist for large values ofx and it is found that there are two cases to consider, namely < -1/2 and = -1/2. The wall temperature and the velocity at large distances along the plate are determined for a range of values of .Notation g Gravitational acceleration - k Thermal conductivity of the saturated porous medium - K Permeability of the porous medium - l Typical streamwise length - q w Uniform heat flux on the wall - Ra Rayleigh number, =gK(q w /k)l/(v) - T Temperature - Too Temperature far from the plate - u, v Components of seepage velocity in the x and y directions - x, y Cartesian coordinates - Thermal diffusivity of the fluid saturated porous medium - The coefficient of thermal expansion - An undetermined constant - Porosity of the porous medium - Similarity variable, =y(1+x ) /3/x 1/3 - A preassigned constant - Kinematic viscosity - Nondimensional temperature, =(T – T )Ra1/3 k/qw - Similarity variable, = =y(loge x)1/3/x 2/3 - Similarity variable, =y/x 2/3 - Stream function  相似文献   

12.
The results of experiments carried out in order to determine the principal characteristics of the process of displacement of one (nonwetting) fluid from inclined macroinhomogeneous porous media by another (wetting) fluid are presented. Irrespective of whether flow in inclined stratified nonhomogeneous formations or in zonally nonhomogeneous media (with a corresponding well distribution) is investigated, the term oblique stratification is used for describing these processes.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.6, pp. 125–131, November–December, 1992.  相似文献   

13.
A numerical and experimental study has been made on the flow and heat transfer in inclined air-filled cavities with aspect ratios 1–18 at Ra numbers from 2·104–5·105 and angles of inclination from 40 to 90°. Core stratification influences the flow. Due to this there arises a torque with two components depending on angle of inclination. On basis of the two torques the computed effects on flow and temperature fields can be explained. For the heat transfer a scaling law could be derived. Experimental data validate the numerical studies.  相似文献   

14.
Transient laminar natural convection in an enclosure partitioned by an adiabatic baffle is investigated numerically. The enclosure is heated by uniform heat flux from left wall and cooled from right wall which is kept at isothermal. A penalty finite element method with Newton-Raphson iteration algorithm and a backward difference scheme dealing with time term are adopted to solve governing equations. The effects of the baffle and Rayleigh number are found to be substantial on heat transfer mechanism during transient process. However, the variations of heat transfer mechanism occur mainly in the first one-third period of the time of transient, in spite of the present or not, or location of a baffle at the conditions of Rayleigh number being 104 and 106 in this study.Transiente, laminare freie Konvektion in einem von einer adiabaten Wand unterteilten Hohlraum wurde numerisch untersucht. Der Hohlraum wird von einem gleichmäßigen Wärmestrom von der linken Wand beheizt und von der rechten isothermen Wand gekühlt. Ein Finite-Element-Verfahren mit dem Newton-Raphson Iterationsalgorithmus und dem Differenzenverfahren mit Zeitterm sind übernommen worden, um bestehende Gleichungen zu lösen. Die Trennwand und die Rayleigh-Zahl sind für den Wärmeübergangsmechanismus während der transienten Phase von wesentlicher Bedeutung. Für den in dieser Studie untersuchten Bereich der Rayleigh-Zahl von 104 und 106 treten Veränderungen im Wärmeübergangsmechanismus hauptsächlich im ersten Drittel der transienten Phase auf und sind unabhängig von der Anwesenheit und Plazierung der Trennwand.  相似文献   

15.
Fully developed laminar mixed convection of a nanofluid consists of water and Al2O3 in horizontal and inclined tubes has been studied numerically. Three-dimensional elliptic governing equations have been solved to investigate the flow behaviors over a wide range of the Grashof and Reynolds numbers. Comparisons with previously published experimental and numerical works on mixed convection in a horizontal and inclined tube are performed and good agreements between the results are observed. Effects of nanoparticles concentration and tube inclinations on the hydrodynamics and thermal parameters are presented and discussed. It is shown that the nanoparticles concentration does not have significant effects on the hydrodynamics parameters. Heat transfer coefficient increases by 15% at 4 Vol.% Al2O3. Skin friction coefficient continually increases with the tube inclination, but the heat transfer coefficient reaches a maximum at the inclination angle of 45°.  相似文献   

16.
The diffuse approximation is presented and applied to natural convection problems in porous media. A comparison with the control volume-based finite-element method shows that, overall, the diffuse approximation appears to be fairly attractive.Nomenclature H height of the cavities - I functional - K permeability - p(M i ,M) line vector of monomials - p T p-transpose - M current point - Nu Nusselt number - Ri inner radius - Ro outer radius - Ra Rayleigh number - x, y cartesian coordinates - u, v velocity components - T temperature - M vector of estimated derivatives - t thermal diffusivity - coefficient of thermal expansion - practical aperture of the weighting function - scalar field - (M, M i ) weighting function - streamfunction - kinematic viscosity  相似文献   

17.
Mixed convection in a porous medium from a vertical plate with variable wall temperature is investigated. The entire mixed convection regime is divided into two regions and two sets of transformations are used. The first region is for the forced convection dominated regime (FCDR) and the other one is for the natural convection dominated regime (NCDR). The dimensionless parameterK′ U /ν is found to characterize the effect of inertia resistance in the first region and the dimensionless parameter (K′ U /ν (Ra x /Pe x ) is found to characterize the effect of inertia resistance in the second region. The solution of the first region is carried out from ξ f =0.0 to ξ f =1.0, and the solution of the second region is carried out from ξ n =0.0 to ξ n =1.0. Velocity and temperature profiles are calculated at different values of the governing parameters. Local Nusslet number variation for the entire mixed convection regime is also calculated and presented.  相似文献   

18.
The combined effects of the magnetic field, permeable walls, Darcy velocity, and slip parameter on the steady flow of a fluid in a channel of uniform width are studied. The fluid flowing in the channel is assumed to be homogeneous, incompressible,and Newtonian. Analytical solutions are constructed for the governing equations using Beavers-Joseph slip boundary conditions. Effects of the magnetic field, permeability,Darcy velocity, and slip parameter on the axial velocity, slip velocity, and shear stress are discussed in detail. It is shown that the Hartmann number, Darcy velocity, porous parameter, and slip parameter play a vital role in altering the flow and in turn the shear stress.  相似文献   

19.
The problem of double-diffusive convection in inclined finned triangular porous enclosures for various thermal and concentration boundary conditions and in the presence of heat source or sink was studied. The finite difference method was employed to solve the dimensionless governing equations of the problem. The effects of the governing parameters, namely the dimensionless time parameter, the inclination angle, Darcy number, heat generation/absorption parameter, the buoyancy parameter and the Rayleigh number on the streamlines, temperature and concentration contours as well as selected velocity component in the x-direction, local and average Nusselt numbers and local and average Sherwood number at the heated and concentrated wall for various values of the aspect ratio and the position of the fin were considered. The present results are validated by favorable comparisons with previously published results. All the results of the problem were presented in graphical and tabular forms and discussed.  相似文献   

20.
Summary The effect of surface mass flux on the non-Darcy natural convection over a horizontal flat plate in a saturated porous medium is studied using similarity solution technique. Forchheimer extension is considered in the flow equations. The suction/injection velocity distribution has been assumed to have power function form Bx l , similar to that of the wall temperature distribution Ax n , where x is the distance from the leading edge. The thermal diffusivity coefficient has been assumed to be the sum of the molecular diffusivity and the dynamic diffusivity due to mechanical dispersion. The dynamic diffusivity is assumed to vary linearly with the velocity component in the x direction, i.e. along the hot wall. For the problem of constant heat flux from the surface (n=1/2), similarity solution is possible when the exponent l takes the value −1/2. Results indicate that the boundary layer thickness decreases whereas the heat transfer rate increases as the mass flux parameter passes from the injection domain to the suction domain. The increase in the thermal dispersion parameter is observed to favor the heat transfer by reducing the boundary layer thickness. The combined effect of thermal dispersion and fluid suction/injection on the heat transfer rate is discussed. Received 7 December 1995; accepted for publication 7 January 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号