首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In situ atomic force microscopy (AFM) was used to study the growth behaviour of anglesite (PbSO4) monolayers on the celestite (0 0 1) face. Growth was promoted by exposing the celestite cleavage surfaces to aqueous solutions that were supersaturated with respect to anglesite. The solution supersaturation, βang, was varied from 1.05 to 3.09 (where βang = a(Pb2+) · a(SO42−)/Ksp,ang). In this range of supersaturation, two single anglesite monolayers (3.5 Å in height each) from pre-existent celestite steps were grown. However, for solution supersaturation βang < 1.89 ± 0.06, subsequent multilayer growth is strongly inhibited. AFM observations indicate that the inhibition of a continuous layer-by-layer growth of anglesite on the celestite (0 0 1) face is due to the in-plane strain generated by the slight difference between the anglesite and celestite lattice parameters (i.e. the linear misfits are lower than 1.1%). The minimum supersaturation required to overcome the energy barrier for multilayer growth gave an estimate of the in-plane strain energy: 11.4 ± 0.6 mJ/m2. Once this energy barrier is overcome, a multilayer Frank–Van Der Merwe epitaxial growth was observed.  相似文献   

2.
Feng Gao 《Surface science》2009,603(8):1126-10202
RuO2(1 1 0) was formed on Ru(0 0 0 1) under oxygen-rich reaction conditions at 550 K and high pressures. This phase was also synthesized using pure O2 and high reaction temperatures. Subsequently the RuO2 was subjected to CO oxidation reaction at stoichiometric and net reducing conditions at near-atmospheric pressures. Both in situ polarization modulation infrared reflection absorption spectroscopy (PM-IRAS) and post-reaction Auger electron spectroscopy (AES) measurements indicate that RuO2 gradually converts to a surface oxide and then to a chemisorbed oxygen phase. Reaction kinetics shows that the chemisorbed oxygen phase has the highest reactivity due to a smaller CO binding energy to this surface. These results also show that a chemisorbed oxygen phase is the thermodynamically stable phase under stoichiometric and reducing reaction conditions. Under net oxidizing conditions, RuO2 displays high reactivity at relatively low temperatures (?450 K). We propose that this high reactivity involves a very reactive surface oxygen species, possibly a weakly bound, atomic oxygen or an active molecular O2 species. RuO2 deactivates gradually under oxidizing reaction conditions. Post-reaction AES measurements reveal that this deactivation is caused by a surface carbonaceous species, most likely carbonate, that dissociates above 500 K.  相似文献   

3.
S. Hrtel  J. Vogt  H. Weiss 《Surface science》2008,602(17):2943-2948
The structure and lattice dynamics of RbBr(1 0 0) and RbI(1 0 0) single crystal surfaces cleaved under UHV conditions were investigated by means of low energy electron diffraction (LEED) at temperatures of 156 K and 183 K, respectively. Since RbBr and RbI are insulators the experiments were carried out with a microchannel plate LEED system at very low primary currents (5 nA). For both materials four different diffraction orders could be observed. Diffraction patterns were recorded over an energy range from 30 eV to 220 eV in increments of 2 eV and I(V) curves for each spot were extracted. The I(V) curves were analyzed using the tensor LEED approach. For both alkali halide substrates surface structures of (1 × 1) periodicity close to the truncated bulk structure were found. For RbBr, the first interlayer distance is reduced by about 2.2%, where the Rb+ cations in the topmost layer are shifted inwards by 0.06(3) Å, and the anions also exhibit an inward shift which is however smaller (0.04(3) Å). The root mean square vibrational amplitudes are enlarged by a factor of 1.3 for Rb+ and 1.25 for Br, respectively. For RbI(1 0 0) the cations of the topmost layer are shifted inwards by 0.07(3) Å and the anions outwards by 0.02(1) Å. The vibrational amplitudes of the ions are not enlarged as for RbBr but close to the corresponding bulk values.  相似文献   

4.
The microstructures and the microwave dielectric properties of the (1 − x)(Mg0.95Co0.05)TiO3x(Na0.5La0.5)TiO3 ceramic system were investigated. Two-phase system was confirmed by the XRD patterns and the EDX analysis. A co-existed second phase (Mg0.95Co0.05)Ti2O5 was also detected. The microwave dielectric properties are strongly related to the density and the matrix of the specimen. A new microwave dielectric material 0.88(Mg0.95Co0.05)TiO3–0.12(Na0.5La0.5)TiO3, possessing an excellent combination of dielectric properties: εr  22.36, Q × f  110,000 GHz (at 9 GHz), τf  2.9 ppm/°C), is proposed as a candidate dielectric for GPS patch antennas.  相似文献   

5.
Ba2(In1 − xMx)2O5 − y / 2(OH)y‪□1 − y / 2 (y ≤ 2; M = Sc3+ 0 ≤ x < 0.5 and M = Y3+ 0 ≤ x < 0.35) compounds were prepared by reacting Ba2(In1 − xMx)2O5‪ phases with water vapor. This reaction is reversible. Analyses of the hydration process by TG and XRD studies show that the thermal stability of hydrated phases increases when x increases and that the incorporation of water is not a single-phase reaction inducing either a crystal system or space group modification. Fully hydrated (y = 2) and dehydrated (y = 0) samples have been stabilized at room temperature and characterized for all compositions. In wet air, all phases show a proton contribution to the total conductivity at temperatures between 350 and 600 °C. At a given temperature, proton conductivity increases with the substitution ratio and reaches at 350 °C, 5.4 10− 3 S cm− 1 for Ba2(In0.65Sc0.35)2O4.20.2(OH)1.6.  相似文献   

6.
The so-called Biphase termination on α-Fe2O3 has been widely accepted to be a structure with a 40 Å unit supercell composed of coexisting islands of Fe1−xO and α-Fe2O3. Based on thermodynamic arguments and experimental evidence, including transmission electron diffraction, imaging, magnetic and spectroscopic information, it is found that the previously proposed structure model is inaccurate. The actual Biphase structure is instead a layered structure related to the reduction of α-Fe2O3 to Fe3O4. A model for the Biphase termination is proposed which does not contain islands of Fe1−xO but instead consists of bulk α-Fe2O3 and a Fe3O4-derived overlayer. The proposed model is consistent with all current and previously reported experimental findings.  相似文献   

7.
Synchrotron surface X-ray diffraction has been used to investigate in situ the morphology and epitaxy of monolayer amounts of copper electrodeposited from aqueous electrolyte onto ultra-high vacuum prepared, smooth, Ga- or As-terminated GaAs(0 0 1) surfaces. The fcc lattice of the epitaxial Cu islands is rotated by 5° and tilted by about 9° with respect to the GaAs substrate lattice, leading to eight symmetry equivalent domains of Cu islands terminated by {1 1 1} facets.  相似文献   

8.
R. Jimenez  A. Varez  J. Sanz   《Solid State Ionics》2008,179(13-14):495-502
The Rietveld analysis of ND patterns of polycrystalline Li0.2 − xNaxLa0.6TiO3 (0 ≤ x < 0.2) samples, recorded between 300 and 1075 K, shows an orthorhombic–tetragonal transformation, in which the octahedral tilting along the b axis is eliminated at ~ 773 K, but the vacancy ordering along the c axis remains. In Li rich samples, conductivity (10− 3 Ω− 1 cm− 1 at 300 K) departs from the Arrhenius behaviour, decreasing activation energies from 0.37 to 0.14 eV when octahedral tilting is eliminated. Successive Maxwell–Wagner blocking processes, detected in the real part of dielectric constant plots, have been ascribed to the Li blocking at interior domains, grain-boundary and electrode–electrolyte interfaces. The substitution of Li+ by Na+ decreases the amount of vacant A-sites, decreasing several orders of magnitude the conductivity when the amount of vacancies approaches the vacancy percolation threshold (np = 0.27). Below the percolation threshold, Li ions only display local mobility, remaining confined into small domains of perovskites.  相似文献   

9.
We have investigated the transports of micro-fabricated sample of 3-K phase superconductivity (Tc  3 K) in Sr2RuO4–Ru eutectic system in order to clarify the pairing symmetry. Up to now, pure Sr2RuO4 (Tc = 1.5 K: 1.5-K phase) is widely recognized to be a spin-triplet odd-parity superconductor. However, the enhancement mechanism of Tc up to 3 K and the pairing symmetry of the 3-K phase have not been cleared yet. By using micro fabrication technique with focused ion beam, we have succeeded to extract individual superconducting channels for the 3-K phase in which only a few pieces of Ru inclusions are contained. Multiple kink structures observed in differential resistance–current (dV/dI − I) characteristics indicate serially connected superconducting filaments in the 3-K phase. We confirm that the 3-K phase is an odd-parity superconductor similar to pure Sr2RuO4 from the monotonous temperature dependence of the critical currents. In addition, we observed a quite unusual hysteresis in dV/dI − I below 2 K, which suggests the internal degrees of freedom in the superconducting state: the most probably the chiral p-wave state.  相似文献   

10.
The atomic and electronic properties of the adsorption of furan (C4H4O) molecule on the Si(1 0 0)-(2 × 2) surface have been studied using ab initio calculations based on pseudopotential and density functional theory. We have considered two possible chemisorption mechanisms: (i) [4 + 2] and (ii) [2 + 2] cycloaddition reactions. We have found that the [4 + 2] interaction mechanism was energetically more favorable than the [2 + 2] mechanism, by about 0.2 eV/molecule. The average angle between the CC double bond and Si(1 0 0) surface normal was found to be 22°, which is somewhat smaller than the experimental value of 28°, but somewhat bigger than other theoretical value of 19°. The electronic band structure, chemical bonds, and theoretical scanning tunneling microscopy images have also been calculated. We have determined a total of six surface states (one unoccupied and five occupied) in the fundamental band gap. Our results are seen to be in good agreement with the recent near edge X-ray absorption fine structure and high resolution photoemission spectroscopy data.  相似文献   

11.
In order to elucidate how oxygen content changes in Nd2 − xSrxNiO4 + δ (x = 0, 0.2, 0.4), defect chemical and statistical thermodynamic analyses were carried out. The relationship among δ, P(O2), and T were analyzed by a defect equilibrium model. Since Nd2 − xSrxNiO4 + δ shows metal like band conduction at high temperatures, chemical potential of hole is expressed by the integration of the Fermi-Dirac distribution function and the density of state. The nonstoichiometric variation of oxygen content in Nd2 − xSrxNiO4 + δ can be explained by the defect equilibrium model with a regular solution approximation. Partial molar entropy and partial molar enthalpy of oxygen are calculated from the nonstoichiometric data and Gibbs–Helmholtz equation. The relationship among defect structure, defect equilibrium, and thermodynamic quantities is elucidated by the statistical thermodynamic model. Thermodynamic quantities are calculated by the statistical thermodynamic model with the results of defect chemical analysis and compared with those obtained from experimental results. Thermodynamic quantities calculated by the statistical thermodynamic model can explain rough tendency of those obtained from the δTP(O2) relationship.  相似文献   

12.
We have investigated the temperature-dependent photoluminescence (PL) spectra in Ga1−xMnxN layers (where x≈0.1–0.8%) grown on sapphire (0 0 0 1) substrates using the plasma-enhanced molecular beam epitaxy technique. All the layers doped with manganese exhibited n-type conductivity with Curie temperature over 350 K. The efficient PL are peaked in the red (1.86 eV), yellow (2.34 eV), and blue (3.29 eV) spectral range. It was found that the blue band at 3.29 eV is mostly associated with the formation complexes between donors (e.g., N vacancy) and Mn acceptors, which results in forming donor levels at 0.23 eV below the conduction band edge. The yellow band is attributed to intrinsic gallium defects. The broad band at 1.86 eV is attributed to inner 5D state transition (T2 to E) of Mn ions.  相似文献   

13.
R. Jimenez  A. Rivera  A. Varez  J. Sanz   《Solid State Ionics》2009,180(26-27):1362-1371
The dependence of Li mobility on structure and composition of Li0.5 − xNaxLa0.5TiO3 perovskites (0 ≤ x ≤  0.5) has been investigated by means of neutron diffraction, nuclear magnetic resonance and impedance spectroscopy. At 300 K, all samples display a rhombohedral superstructure (R-3c S.G.), where octahedra are out of phase tilted along [111] direction of the ideal cubic cell. The elimination of the octahedral tilting is responsible for the rhombohedral–cubic transformation, detected near 1000 K. In these perovskites, La and Na cations are randomly distributed in A sites, but Li ions are fourfold coordinated at unit cell faces of the cubic perovskite. Lithium conductivity, σ300 K, decreases with the sodium content, decreasing from values typical of fast ionic conductors, 10− 3 S/cm, to those of good insulators, 10− 10 S/cm, when the interconnectivity between vacant A sites is lost (x > 0.3). In samples with x < 0.3, dc conductivity displays a non-Arrhenius behaviour, decreasing activation energy from ~ 0.37 to 0.25 eV when the sample is heated between 77 and 500 K. The temperature dependence of BLi factors shows the existence of two regimes for Li motion. Below 373 K, Li ions remain partially located near square oxygen windows that connect contiguous A sites, but above 400 K, extended Li motions become dominant. The additional decrease of activation energy from 0.25 to 0.16 eV (low-temperature 7Li NMR value), should require the full elimination of octahedral tilting which is only produced above 1000 °C.  相似文献   

14.
The initial nucleation of Au onto the R45° reconstructed Fe3O4(0 0 1) surface has been studied using scanning tunnelling microscopy. Au clusters are formed, with a typical lateral dimension of 0.9 nm. The measured corrugation height of the clusters, 0.1 nm, suggests that they are a single atomic layer in height. The clusters nucleate on a specific surface site, which lies at the centre of a R45° reconstructed unit cell. The size and spatial distribution of the Au clusters formed is shown to strongly correlate to the symmetry and periodicity of the reconstructed magnetite surface. It is also shown that even when the clusters are in close proximity they still only occupy this single nucleation site, and thus maintain the periodicity of the substrate. We relate the order and stability of this system to the fact that magnetite (0 0 1) is polar, and suggest that such surfaces offer ideal templates for self-assembly due to the stability of their polarity induced reconstructions.  相似文献   

15.
The chemical pressure control in (Sr2−xCax)FeMoO6 (0  x  2.0) with double perovskite structure has been investigated systematically. We have performed first-principles total energy and electronic structure calculations for x = 0 and x = 2.0. The increasing Ca content in (Sr2−xCax)FeMoO6 samples increases the magnetic moment close to the theoretical value due to reduction of Fe/Mo anti-site disorder. An increasing Ca content results in increasing (Fe2+ + Mo6+)/(Fe3+ + Mo5+) band overlap rather than bandwidth changes. This is explained from simple ionic size arguments and is supported by X-ray absorption near edge structure (XANES) spectra and band structure calculations.  相似文献   

16.
Melilite type ceramics ABC3O7 such as La1.54Sr0.46Ga3O7.27 are a new class of oxide conductors where the conductivity is carried out through interstitial oxygen ions. This work presents the attempt to replace the A-site element La with the other lanthanide elements and Y, resulting in various Ln1 + xSr1 − xGa3O7 + x/2 ceramics, in which Ln = La, Pr, Nd, Sm, Eu, Gd, Dy, Yb, Y, and 0.1 < x < 0.54. X-ray diffraction analysis shows that the melilite structure could be formed when the replacement is conducted with most lanthanides but not Yb and Y. Impedance spectroscopy demonstrates that the conductivity decreases dramatically with the decreasing of Ln3+ size and the charge-carrier concentration. These results suggest that, as an interstitial oxide ion electrolyte, La1.54Sr0.46Ga3O7.27 is the most promising ceramic in the Ln1 + xSr1 − xGa3O7+x/2 melilite family since La3+ has the largest ionic radius of the lanthanide elements.  相似文献   

17.
Amorphous, nanocrystalline, and bulk AlO(OH) · xH2O crystals have six fundamental modes (FM) of vibration in a nonlinear AlO(OH) molecular structure. Most of them appear in groups of four IR and Raman bands. Their positions and relative intensities differ significantly in three specimens. The nanocrystals (monoclinic structure with z=8 molecules per unit cell) have four OH stretching bands at values enhanced by up to 360 cm−1 at 3120, 3450, 3560 cm−1 in comparison to those in bulk crystals or amorphous specimens. The first two bands are broad, bandwidth Δν1/2200 to 350 cm−1, while the other two are sharp, Δν1/290 cm−1. The sharp bands shift to 3525 and 3595 cm−1 after heating the sample at 100°C. They no longer appear after heating at 300 or 500°C for 2 h (the specimen decomposes to Al2O3), leaving behind only two bands at 3100 and 3400 cm−1. A Δν1/2 value of 500 cm−1 appears in the 3400 cm−1 in a delocalized distribution of H atoms. Two bands also occur at 3098 and 3300 cm−1 in bulk crystals (orthorhombic structure with z=4) or at 2990 and 3515 cm−1 in an amorphous sample. More than one bands appear in a FM vibration in occurrence of sample in more than one conformers. The amorphous sample has approximately the same conformer structure as the bulk crystals. An amorphous surface structure exists in nanocrystals with a group of three bands at 1420, 1510 and 1635 cm−1 in an interconnected network structure. It encapsulates the nanocrystals in an amorphous shell. Its volume fraction, 33% estimated from the integrated intensity in three bands, determines 2.2 nm thickness in the shell in spherical shape of nanocrystals in 35 nm diameter.  相似文献   

18.
This paper is the first part of a two part series, where the effects of varying the A-site dopant on the defect chemistry, the diffusion coefficient and the surface catalytic properties of the materials (La0.6Sr0.4 − xMx)0.99Co0.2Fe0.8O3 − δ, M = Sr, Ca (x = 0.05, 0.1), Ba (x = 0.1, 0.2) (LSMFC) have been investigated. In part I, the findings on the defect chemistry are reported, while the transport properties are reported in part II. Substitution of Sr2+ ions with Ca2+ ions (smaller ionic radius) and Ba2+ ions (larger ionic radius) strains the crystal structure differently for each composition while keeping the average valence of the cations constant. The Ba2+ containing materials show the largest oxygen loss at elevated temperatures, while the purely Sr2+ doped material showed the smallest oxygen loss. This was reflected in the partial oxidation entropy of the materials. The measured oxygen loss was modelled with point defect chemistry models. Measurements at very low pO2 showed several phase transitions.  相似文献   

19.
Scanning tunneling microscopy/spectroscopy (STM/STS) measurements on multi-layered cuprate superconductor Ba2Ca5Cu6O12 (O1−x Fx)2 are carried out. STM topographies show randomly distributed bright spot structures with a typical spot size of 0.8 nm. These bright spots are occupied about 28% per one unit cell of c-plane, which is comparable to the regular amount of apical oxygen of 20% obtained from element analysis. Tunneling spectra simultaneously show both the small and the large gap structures. These gap sizes at 4.9 K are about Δ 15 meV and 90 meV, respectively. The small gap structure disappears at the temperature close to TC, while the large gap persists up to 200 K. Therefore, these features correspond to the superconducting gap and pseudogap, respectively. These facts give evidence for some ordered state with large energy scale even in the superconducting state. For the superconducting gap, the ratio of 2Δ/KBTC = 4.9 is obtained with TC = 70 K, which is determined from temperature dependence of the tunneling spectra.  相似文献   

20.
We have investigated the oxidation behavior of MBE grown epitaxial Y(0 0 0 1)/Nb(1 1 0) films on sapphire substrates at elevated temperatures under atmospheric conditions with a combination of experimental methods. At room temperature X-ray diffraction (XRD) reveals the formation of a 25 Å thick YOxHx layer at the surface, while simultaneously oxide growth proceeds along defect lines normal to the film plane, resulting in the formation of a single crystalline cubic Y2O3 (2 2 2) phase. Furthermore, nuclear resonance analysis (NRA) reveals that hydrogen penetrates into the sample and transforms the entire Y film into the hydride YH2 phase. Additional annealing in air leads to further oxidation radially out from the already existing oxide channels. Finally material transport during oxidation results in the formation of conically shaped oxide precipitations at the surface above the oxide channels as observed by atomic force microscopy (AFM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号