首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 765 毫秒
1.
Irradiation of Mn2(CO)10 with the bidentate phosphine 1,2-bis(diethylphosphino)ethane (depe) rapidly yields [Mn(CO)3depe]2 and Mn(CO)3depe. The two species are in equilibrium in solution, with the dimer present in larger amounts: [Mn(CO)3depe]2
2Mn(CO)3depe. The formation of Mn(CO)3depe proceeds much more readily than the formation of Mn(CO)3L2 (L = monodentate phosphine complexes). In addition, no side-products are formed as is the case with the monodentate ligands. The ease with which Mn(CO)3depe can be generated makes it a convenient reagent for the synthesis of organic radicals because the complex abstracts halogen atoms from alkyl and aryl halides: Mn(CO)3depe + RX → Mn(CO)3(depe)X + P  相似文献   

2.
Relative rates of dioxygen uptake by the complexes trans-Ir(CO)X(PPh2R)2 (R = Ph, Me, Et; X = F, Cl, Br, I) have been measured in dichloromethane and found to follow the order R = Ph<Et<Me and X = F <Cl<Br<I. The basicity of these trans-Ir(CO)X(L)2 complexes, as measured by their affinity for dioxygen, is not reflected in the energy of the ν(CO) absorption in the parent compounds; a previous report that complex basicity ∝1/ν(CO) does not hold for the complexes reported here.  相似文献   

3.
Not a dimer but a monomer was found in the X-ray structure analysis of the complex “trans-[{FeCl(depe)2}2(µ-N2)](BPh4)2” (depe=Et2PCH2CH2PEt2). The complexes [FeXN2(depe)2]BPh4 (X=Cl, Br; structure of the cation for X=Cl shown on the right) are much less stable than the analogous hydride compounds and undergo N2 exchange at room temperature even in the solid state.  相似文献   

4.
The complex mer-trans-[Mn(CO)3{P(OMe)2Ph}2X] (X = Cl, Br) is an intermediate in the conversion of fac-[Mn(CO)3{P(OMe)2,Ph}2,X] into mer- cis-[Mn(CO)2{P(OMe)2Ph}3X] in the presence of P(OMe)2Ph in benzene. No direct route between the latter two complexes could be detected kinetically. The results imply a trans carbonyl disposition as a prerequisite for higher carbonyl substitution in octahedral Mn1 carbonyl complexes.  相似文献   

5.
Abstract

The reversible oxygenation of the Co(II) complex of tris(2-aminoethyl)amine (TREN, L) has been studied in some detail. The equilibrium constant K O2 =1026.92 M?2 atm?1, corresponding to the quotient [H+] [L2Co2(O2) (OH)3+]/[Co2+]2 [L]2 PO2 was determined by potentiometric equilibrium measurements of hydrogen ion concentration. Values for the thermodynamic constants, ΔH° =–63 ± 9 kcal/mole and ΔS° =–100 ± 15 cal/deg. mol, were calculated from the temperature dependence of the equilibrium constant. Oxygen stoichiometry, measured with a polarographic sensor, indicated the formation of a binuclear (peroxo bridged) complex, and the potentiometric equilibrium data indicated the presence of a second, μ-hydroxo, bridge. Measurement of the kinetics of the fast reaction between the cobalt(II)-TREN complex and dioxygen gave the value of the second order rate constant for the formation of the dioxygen complex as k 1 =2.8 × 10+3 sec?1 mol?1. The first order rate constant for the decomposition of the dioxygen complex measured by stopped-flow was found to be k ?2 =0.7 sec?1. Kinetic and equilibrium data are discussed with respect to the probable structure and mechanism of formation of the dioxygen complex, and are compared with similar data previously reported for analogous complexes. The oxygen complex reported is unique with respect to its extremely slow rate of conversion to inert cobalt(III) complexes.  相似文献   

6.
Summary 3-(2-Furyl) 2-propene aldoxime (FAOH) and 3-(5-methyl 2-furyl) 2-propene aldoxime (M5FAOH) react, in stoichiometric amounts, with 3d divalent metal halides MX2(M=Mn, Co, Ni, Cu and Zh; X=Cl or Br) to givetrans-octahedral complexes, except the ZnCl2 derivative with FAOH which is tetrahedral. These ligands are bidentate in [ML2X2] species (L=FAOH or M5FAOH) through the cyclic oxygen atom and the oxime nitrogen, and are monodentate for [ML4X2] complexes and [ZnCl2(FAOH)2] through the N-oxime atom. The structures were established by analytical and spectroscopic data.  相似文献   

7.
Haruyuki Baba  Motohiro Nakano 《Polyhedron》2009,28(9-10):2087-2091
Three novel Mn(III) cyclam complexes, [Mn(cyclam)(NCBH3)2](CF3SO3), [Mn(cyclam)(NCBPh3)2](CF3SO3), and [Mn(cyclam)(NCSe)2](CF3SO3) · H2O, have been synthesized. These complexes are in the high-spin state between 4 and 350 K, and show large zero-field splittings. The crystal structure of [Mn(cyclam)(NCBH3)2](CF3SO3) was determined where the axial elongation of Mn–N bonds is found to be the largest among the homologue complexes. Ligand field in the [Mn(cyclam)X2]+ complex series was examined by angular-overlap model calculation.  相似文献   

8.
Complexes with chemical compositions VO(Hatth)2SO4, VO(Hatth)2SO4·py, [M(Hatth)2Cl·H2O]Cl [M = Mn(II), Co(II) and Ni(II)], [Cu(Hatth)2Cl]2Cl2, [Cu(Hatth)2· Cl·py]Cl, [Cd(Hatth)2Cl]Cl, M(Hatth)2Cl2 [M = Zn(II) and Hg(II)], VO(atth)2, VO(atth)2py, M(atth)2(py)2 [M = Mn(II) and Cu(II)], M(atth)2(H2O)2 [M = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)], Hatth = 2-acetylthiophene-2-thenoylhydrazone, and atth, its deprotonated form, have been prepared and characterized by analytical data, molar conductance, magnetic susceptibility, electronic and photoacoustic, ESR, IR and NMR spectral studies. X-ray diffraction study has been used to determine the shape and the dimensions of the unit lattice of copper(II) complexes.  相似文献   

9.
Dioxygen addition to the 16-electron complexes [OsX(P-P)2]+ (3) gives the dioxygen adducts [OsCl(eta 2-O2)(P-P)2]+ (3), which in turn react with HCl gas to give the novel osmium(IV) oxo complexes trans-[OsX(O)(P-P)2]+ (5) (X = Cl, Br; P-P = 1,2-bis(dicyclohexylphosphino)ethane (dcpe), 1,2-bis(diethylphosphino)ethane (depe), 1,2-bis((2R,5R)-2,5-dimethylphospholano)benzene (Me-duphos)). The complexes [OsX(dcpe)2]+ (X = Cl, Br) (3) are studied by X-ray crystallography and are shown to have a "Y-shaped" coordination geometry in the equatorial plane. The X-ray structural analysis of [OsCl(eta 2-O2)(dcpe)2]+ (4a) reveals an exceptionally short O-O bond (1.315(5) A). trans-[OsCl(O)(dcpe)2]+ (5a), the first oxo complex of osmium(IV) investigated crystallographically, exhibits a long Os-O distance of 1.834(3) A. The reactivity of 4 and 5 as oxidants is described. The dioxygen complex 4a transfers one oxygen atom to PPh3 (to give Ph3PO) or oxidizes iodide ions to triiodide ions in the presence of anhydrous HCl. In both reactions, the corresponding oxo species 5a is quantitatively formed as the only metal-containing product. Oxo complexes 5 are surprisingly stable and unreactive toward standard reducing agents such as phosphines.  相似文献   

10.
Four manganese(II) complexes of di-2-pyridyl ketone N(4)-methyl (HDpyMeTsc) and N(4)-ethyl thiosemicarbazones (HDpyETsc) were synthesized and physico-chemically characterized by means of partial elemental analyses, molar conductance measurements, electronic, infrared and EPR spectral studies. The complexes are represented as [Mn(DpyMeTsc)2] (1), [Mn(HDpyMeTsc)Cl2] (2), [Mn(HDpyMeTsc)2](ClO4)2 · H2O (3) and [Mn(DpyETsc)2] · 2H2O (4). The crystal structure of [Mn(DpyMeTsc)2] was established by single crystal X-ray diffraction studies. The compound crystallizes into a monoclinic lattice with P21/n space group. Manganese(II) exists in a distorted octahedral geometry in the complex.  相似文献   

11.
Five Mn(II) complexes of bis(thiosemicarbazones) which are represented as [Mn(H2Ac4Ph)Cl2] (1), [Mn(Ac4Ph)H2O] (2), [Mn(H2Ac4Cy)Cl2]·H2O (3), [Mn(H2Ac4Et)Cl2]·3H2O (4) and [Mn(H2Ac4Et)(OAc)2]·3H2O (5) have been synthesized and characterized by elemental analyses, electronic, infrared and EPR spectral techniques. In all the complexes except [Mn(Ac4Ph)H2O], the ligands act as pentadentate neutral molecules and coordinate to Mn(II) ion through two thione sulfur atoms, two azomethine nitrogens and the pyridine nitrogen, suggesting a heptacoordination. While in compound [Mn(Ac4Ph)H2O], the dianionic ligand is coordinated to the metal suggesting six coordination in this case. Magnetic studies indicate the high spin state of Mn(II). Conductivity measurements reveal their non-electrolyte nature. EPR studies indicate five g values for [Mn(Ac4Ph)H2O] showing zero field splitting.  相似文献   

12.
Condensation of bis(2-furanthiocarboxyhydradatometal(II), M(fth)2; [M (II) = Mn, Fe, Co, Ni, Cu and Zn] with pyridine-2- and -4-carboxaldehydes gave complexes of the formula M(pfth)2 [pfth? = pyridine-2-carboxaldehyde-2-furanthiocarboxyhydrazonato], Ni(Ifth)2, Zn(Ifth)2, Cu(Ifth) and Co(Ifth)3, (Ifth? = pyridine-4-carboxaldehyde-2-furanthiocarboxyhydrazonato). The magnetic and electronic spectral studies coupled with photoacoustic or Mössbauer spectra suggested octahedral geometry for the M(II) complexes with low-spin states for Co(Ifth)3 and Fe(pfth)2. IR and 1H NMR spectral studies of diamagnetic complexes suggested bonding through “azomethine” nitrogen and “thiolo” sulphur. IR spectra also showed the involvement of pyridine ring nitrogen in coordination in all the complexes except Cu(Itfh), Co(Ifth)3, and Zn(Ifth)2. Some of the compounds possessed antimicrobial activity.  相似文献   

13.
Transition metal complexes with terminal oxo and dioxygen ligands exist in metal oxidation reactions, and many are key intermediates in various catalytic and biological processes. The prototypical oxo‐metal [(OC)5Cr? O, (OC)4Fe? O, and (OC)3Ni? O] and dioxygen‐metal carbonyls [(OC)5Cr? OO, (OC)4Fe? OO, and (OC)3Ni? OO] are studied theoretically. All three oxo‐metal carbonyls were found to have triplet ground states, with metal‐oxo bond dissociation energies of 77 (Cr? O), 74 (Fe? O), and 51 (Ni? O) kcal/mol. Natural bond orbital and quantum theory of atoms in molecules analyses predict metal‐oxo bond orders around 1.3. Their featured ν(MO, M = metal) vibrational frequencies all reflect very low IR intensities, suggesting Raman spectroscopy for experimental identification. The metal interactions with O2 are much weaker [dissociation energies 13 (Cr? OO), 21 (Fe? OO), and 4 (Ni? OO) kcal/mol] for the dioxygen‐metal carbonyls. The classic parent compounds Cr(CO)6, Fe(CO)5, and Ni(CO)4 all exhibit thermodynamic instability in the presence of O2, driven to displacement of CO to form CO2. The latter reactions are exothermic by 47 [Cr(CO)6], 46 [Fe(CO)5], and 35 [Ni(CO)4] kcal/mol. However, the barrier heights for the three reactions are very large, 51 (Cr), 39 (Fe), and 40 (Ni) kcal/mol. Thus, the parent metal carbonyls should be kinetically stable in the presence of oxygen. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
Manganese(II), cobalt(II), nickel(II) and copper(II) complexes with 1,5,11,15-tetraaza-21,22-dioxo-tricyclo [19,3,1,I6,10]-5,10,15-20-dicosatetraene (L), as a new macrocyclicligand, have been synthesized with and characterized by elemental analysis, molar conductance measurements, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The molar conductance measurements of the complexes in DMF correspond to non-electrolytic nature of Mn(II), Co(II) and Cu(II) complexes, while showing a 1:2 electrolyte for thew Ni(II) complexe. Thus, these complexes may be formulated as [M(L)X2] and [Ni(L)]X2 (where M = Mn(II), Co(II) and Cu(II) and X = Cl- and NO3 -). On the basis of IR, electronic and EPR spectral studies, an octahedral geometry has been assigned for Mn(II) and Co(II), a square planar for Ni(II) and tetragonal for Cu(II) complexes. In vitro ligand and its metal complexes were also screened against the growth of some fungal and bacterial species in order to assess their antimicrobial properties.  相似文献   

15.
Summary Copper(I) complexes [CuClL]2 (L=Py, 4-PhPy, 4-MePy, 4-Me2NPy, and 4-PhCOPy) react with dioxygen in dichloromethane according to the rate law: r=KD 1/2 k2 [CuClL]2 1/2[O2] where KD is the dissociation constant of the equilibrium [CuClL]2 2 CuCIL and k2 the second order rate constant of the reaction of the latter with dioxygen.The KD values were determined by molecular weight measurements in dichloromethane and a correlation has been developed between the experimental rate constants obtained and the acid dissociation constants (pKa) for the ligands. The reaction fits a Hammett linear free energy relationship and the rate-determining step is attributed to the first electron transfer to the dioxygen molecule from the mononuclear copper(I) complex, which is influenced by changes in the electron density on the copper.  相似文献   

16.
The triply chloro-bridged binuclear complexes [Ph3X=O···H···O=XPh3][Ru2Cl7(XPh3)2]·0.5(CH2Cl2)(H2O) (X = As or P) were obtained from [RuCl3(XPh3)2DMA]·DMA (DMA = dimethylacetamide) CH2Cl2/Et2O solution. The structures were characterized by X-ray diffraction studies. The complexes are formed from two Ru atoms bridged by three chloride anions. The two ruthenium atoms are also coordinated to two non-bridging Cl atoms and an AsPh3 or PPh3 ligand respectively. As an interesting feature, the cations of these complexes are protons, trapped in a very short hydrogen bond between two triphenylarsine or triphenylphosphine oxide molecules.  相似文献   

17.
Five new complexes, [M(CO)5(apmsh)] [M = Cr; (1), Mo; (2), W; (3)], [Re(CO)4Br(apmsh)] (4) and [Mn(CO)3(apmsh)] (5) have been synthesized by the photochemical reaction of metal carbonyls [M(CO)6] (M = Cr, Mo and W), [Re(CO)5Br], and [Mn(CO)3Cp] with 2-hydroxyacetophenone methanesulfonylhydrazone (apmsh). The complexes have been characterized by elemental analysis, mass spectrometry, f.t.-i.r. and 1H spectroscopy. Spectroscopic studies show that apmsh behaves as a monodentate ligand coordinating via the imine N donor atom in [M(CO)5(apmsh)] (1–4) and as a tridentate ligand in (5).  相似文献   

18.
Novel mononuclear oxovanadium(IV) and manganese(III) complexes [VO(L1)2·H2O] (1); [VO(L2)2·H2O] (2); [VO(L3)2·H2O] (3); [Mn(L1)2]ClO4·H2O (4); [Mn(L2)2] ClO4·H2O (5); [Mn(L3)2]ClO4·H2O (6) were prepared by condensation of 1 mol of VOSO4·5H2O or Mn(OAc)3· 2H2O with 2 mol of ligand HL1, HL2 or HL3 (where HL1 = 4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2- phenyl-2,4-dihydro-pyrazol-3-one; HL2=4-[(2-hydroxy-ethylamino)-methylene]-5-methyl-2-p-tolyl-2,4-dihydro-pyrazol-3-one; HL3=4-{4-[(2-hydroxy-ethyl-amino)-methyl]-3-methyl-5-oxo-4,5-dihydropyrazol-1-yl} benzene sulfonic acid). The resulting complexes were characterized by elemental analyses, molar conductance, magnetic and decomposition temperature measurements, electron spin resonance, FAB mass, IR and electronic spectral studies. From TGA, DTA and DSC, the thermal behaviour and degradation kinetic were studied. Electronic spectra and magnetic susceptibility measurements indicate distorted octahedral stereochemistry of oxovanadium(IV) complexes and regular octahedral stereochemistry of manganese(III) complexes. Hamiltonian and bonding parameters found from ESR spectra indicate the metal ligand bonding is partial covalent. The X-ray single crystal determination of one of the representative ligand was carried out which suggests existence of amine-one tautomeric form in the solid state. The 1H-NMR spectra support the existence of imine-ol form in solution state. The LC-MS studies sustain the1H-NMR result. The electronic structure of the same representative ligand was optimized using 6-311G basis set at HF level ab initio studies to predict the coordinating atoms of the ligand.  相似文献   

19.
Perfluoromethyl Element Ligands. XLIII [1] Novel Synthetic Routes to Binuclear Complexes of the Type MM′(CO)8ER2X (M/M′ = Mn/Mn, Mn/Re, Re/Re; E = P, As; R = CF3, Me; X = Hal, ) Mn(CO)5I reacts with compounds of the type (CF3)2EAsMe2 (E = P, As) as with the symmetric E2(CF3)4 ligands in the first step with cleavage of the E‐As bond to yield the pro ducts (CO)5MnE(CF3)2 and Me2AsI. Reaction of the mononuclear complexes with excess of Mn(CO)5I leads in good yields to the known dinuclear compounds (CO)4Mn[E(CF3)2, I]Mn(CO)4 and CO. Me2AsI, the second product of the EAs cleavage, attacks the starting compound Mn(CO)5I giving cis‐Mn(CO)4I(AsMe2I) and CO. This result encouraged us to thoroughly investigate the preparation of cis‐M(CO)4X(EMe2Y) complexes with most of the possible combinations of M = Mn, Re; E = P, As and X, Y = Cl, Br, I. An alternative route to these compounds was opened by the cleavage of the dinuclear manganese or rhenium halides M2(CO)8X2 with the halophosphanes or ‐arsanes Me2EY. This route was found to be especially advantageous for the preparation of the rheniumcarbonyl precursors, since milder conditions than for the CO‐substitution in Re(CO)5X compounds are sufficient for the halogen‐bridged dinuclear complexes. Cis‐M(CO)4X(EMe2Y) complexes were used as precursors for the synthesis of novel homo‐ and heterodinuclear complexes of the type (CO)4M(EMe2, X)M′(CO)4 by reacting the EY function with transition metal carbonylates Kat[M′(CO)5] (Kat = Na, Bu4N, Ph4As). Thus the preparation of a wide range of complexes was possible, which before had been successfully prepared by the direct reaction of Mn2(CO)10 with Me2EX only in few cases, e. g. with Me2AsI. Spectroscopic investigations, using the CO valence frequencies and the 1H‐NMR data of the ligands EMe2Y or of the Me2E bridges, were applied to study the influence of the variables M, M′, E, X, Y and Kat on the reactivity of the mononuclear complexes and the bonding situation in both the mono‐ and the dinuclear systems. The new compounds were characterized by spectroscopic (IR, NMR, MS) and analytic methods (C, H).  相似文献   

20.
The complexes fac-O3ClOMn(CO)3(NN) (NN = 1,10-phenantroline (phen) or 2,2'bipyridine (bipy)) react with an excess of the ligands L [L = P(OR)3 or P(OR)2Ph, R = Me or Et] in refluxing ethanol to give cis-trans-[Mn(CO)2-(NN)L2]ClO4, or the more highly substituted [Mn(CO)(NN)L3]ClO4 if the reaction is carried out under UV irradiation. Carbonylation at normal pressure of the latter complexes results in the formation of cis-cis-[Mn(CO)2(NN)L2]ClO4, which undergo isomerization to the cis-trans isomer when heated in acetone.Treatment of fac-O3ClOMn(CO)3(dpe) (dpe = 1,2-bis(diphenylphosphino)-ethane] with bipy or phen in refluxing ethanol gives the corresponding cis-[Mn(CO)2(NN)(dpe)]ClO4 complexes, and irradiation of these with UV in the presence of an excess of P(OR)3 (R = Ph, Et or Me) gives the monocarbonyls [Mn(CO)(NN)(dpe)L]ClO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号