首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A circulatory flow-injection method (cyclic FIA) for the repetitive determination of zinc has been proposed. The procedure involves the use of 2-(5-bromo-2-pyridylazo)-5-[N-n-propyl-N-(3-sulfopropyl)amino]phenol (5-Br-PAPS) together with EDTA as a reagent carrier solution, which is recycled in a single-line flow system via a reservoir. The formed 5-Br-PAPS-Zn(II) complex was measured spectrophotometrically at 552 nm, and the signal intensity corresponded to the zinc concentration. After passing through a flow-through cell, the carrier stream then returned to the reservoir, and the main reagent, 5-Br-PAPS, was successfully regenerated by a ligand-exchange reaction with EDTA, allowing the repetitive determination of zinc. The calibration curve for zinc was linear in the concentration range from 0.4 to 10.0 mg dm(-3) with a correlation coefficient of 0.9995 (n = 6). The detection limit of this method was 0.02 mg dm(-3) (S/N= 3). This method allowed as many as 300 repetitive determinations of 2.0 mg dm(-3) zinc solution with only 100 cm3 of the circulating carrier solution, providing a reduction in the consumption of reagents and an elimination of waste, an important approach towards clean chemistry.  相似文献   

2.
Zenki M  Iwadou Y 《Talanta》2002,58(6):1055-1061
The precipitation reaction of silver chloride (AgCl) is carried out in a large amount of ammonia (NH3). This makes possible to adopt a closed-loop flow injection (FI) system and to determine chloride repetitively. A solution of 30 mmol l−1 silver nitrate and 80 mmol l−1 NH3 in a single reservoir (250 ml) is continuously circulated through the flow cell at a flow rate of 2.0 ml ml−1. The chloride containing sample (100 μl) was introduced into this reagent solution by means of six-way valve. AgCl precipitates formed in the sample zone are monitored spectrophotometrically (at 500 nm) in the flow system. After passing through the flow cell, the excess NH3 in the circulating reagent solution dissolves AgCl precipitates and the stream then returns to the reservoir. Various variables of the FI system were optimized and a study of interfering ions was also carried out. A linear calibration graph was obtained from 3.0 to 30 mg l−1 chloride. Two hundred repetitive injections of 5.0 mg l−1 chloride into the circulating reagent solution have shown unchanged base-line and good reproducibility. The method was successfully applied to the determination of chloride in tap, natural and the reference waters.  相似文献   

3.
A method for the potentiometric determination of bromate by circulatory flow injection analysis (CFIA) is described. The procedure involves the use of an Fe(III)-Fe(II) potential buffer solution, which is recycled via a reservoir. The analytical method is based on a linear relationship between the concentration of bromate and a very transient potential change in the electrode potential due to the generation of intermediate bromine during the reaction of bromate with the Fe(III)-Fe(II) potential buffer solution, which also contains NaBr, (NH4)6Mo7O24 and H2SO4. An aliquot (5 microl) of a bromate sample solution was injected into the stream of the potential buffer solution, 100 ml of which was circulated at a flow rate of 1 ml/min; the potential buffer solution stream was then returned to the reservoir after passing through a flow-through redox electrode detector. A potential change due to the reaction of the injected sample with the potential buffer in a reaction coil was measured with the detector in the form of a peak signal. The effects of the bromide, sulfuric acid and Fe(III)-Fe(II) concentrations in the potential buffer, and length of the reaction coil on the peak heights were examined in order to optimize the proposed CFIA method. The analytical sensitivities to bromate were 5.6 mV/microM for 1 x 10(-2) M and 30.9 mV/microM for 1 x 10(-3) M in the concentration of Fe(III)-Fe(II) in a potential buffer solution containing 0.35 M NaBr, 0.2% (NH4)6Mo7O24 and 1 M H2SO4. The detection limit of bromate obtained by a 1 x 10(-3) M Fe(III)-Fe(II) potential buffer solution was 0.02 microM (2.5 ppb). The numbers of repetitive determinations in which the relative sensitivities within 5% were regarded as being tolerated were ca. 4000 and 2000 for the use of only 100 ml of 1 x 10(-2) M and 1 x 10(-3) M Fe(III)-Fe(II) potential buffer solution, respectively.  相似文献   

4.
A simple and rapid procedure for SO2 determination in air was developed by using a flow injection analysis (FIA) system coupled with a 3-hole chromatomembrane cell (CMC). The CMC was applied for the on-line collection/concentration of SO2 from air into a solution of 2 g l(-1) triethanolamine (TEA) solution as an absorbing solution: SO2 was converted to SO3(2-) in the alkaline absorbing solution. The solution containing absorbed SO2 was introduced into the carrier stream of the FIA system. The amount of SO3(2-) in the absorbing solution was measured by spectrophotometry with a mixed reagent of pararosaniline and formaldehyde, and was converted to the concentration of SO2 in the air sample. A calibration graph prepared by using standard sodium sulfite aqueous solutions was adopted for the determination of SO3(2-) in the absorbing solution. The SO2 concentration in indoor air examined was found to be 22.7 +/- 0.2 ppbv using 20 ml of air sample with the air flow rate of 5 ml min(-1), where the relative standard deviation was 1.7%. The detection limit for aqueous solutions and air samples were 6.9 x 10(-8) M and 0.48 ppbv, respectively. The measuring time for one sample was about 10 min when a 20 ml air sample was used. The interferences from common anionic species, formaldehyde and acetaldehyde, were also examined.  相似文献   

5.
An ion chromatographic (IC) method has been developed for determination of hydrogen ion (H+). It is based on the use of sulfonated cation-exchange resin as stationary phase, aqueous ethylenediamine-N,N,N',N'-tetraacetic acid (dipotassium salt, EDTA-2K, written as K2H2Y) solution as mobile phase, and conductivity for detection. H+ was separated mainly by cation-exchange, but its elution was accelerated by the presence of EDTA. The order of elution for the model cations was H+ > Li+ > Na+ > NH4+ > Ca2+ > > Mg2+. A sharp and highly symmetrical peak was obtained for H+ and this was attributed to the capacity of H2Y2(2-) to receive and bind H+. H+ was detected conductiometrically and detector response (reduction in conductivity as a result of H+ +H2Y2- --> H3Y-) was linearly proportional to the concentration of H+ in the sample. The detection limit for H+ with this IC system was better than 4.7 micromol L(-1). A significant advantage of this method was the ability to separate and determine, in one step, H+ and other cations. The successful determination of H+ and other cation species in real acid-rain samples demonstrated the usefulness of this method.  相似文献   

6.
Hayashibe Y  Takeya M  Sayama Y 《Talanta》1994,41(4):531-536
A flow-injection method has been developed for the spectrophotometric determination of cobalt in zinc electrolyte using 2-(5-bromo-2-pyridylazo)-5-(N-propyl-N-sulphopropylamino)aniline (5-Br-PSAA) as chromogenic reagent. A sample solution is injected into a carrier containing hydrochloric acid, diammonium hydrogenphosphate and hydrogen peroxide. The sample is then merged with the stream of ammonium acetate solution and PSAA solution is synclonously injected into the sample zone. After mixing with 2M sulphuric acid, the absorbance of cobalt-PSAA complex is measured at 617 nm. The flow injection system proposed is fully controlled with a personal computer. The flow-injection system permits throughput of 12 samples per hour. The relative standard deviation (n = 10) for 0.1 mug Co/ml solution is 5.0%.  相似文献   

7.
A cyclic flow injection analysis (cyclic FIA) for the repetitive determination of chemical oxygen demand (COD) was developed. The acidic KMnO4 method was carried out by adopting a single-line circulating flow system. The oxidant (KMnO4) consumed by the oxidation of organic substances was regenerated and reused repeatedly, resulting in an extreme reduction of hazardous wastes. Only 50 ml of the reagent carrier solution containing 0.2 mM KMnO4 and 1 mM HIO4 in 0.8 M H2SO4 solution was continuously circulated through the system. The KMnO4 could play two roles: acting as an oxidant of the organic substances and/or a spectrophotometric reagent. The co-existing HIO4 acted as a regenerator of KMnO4, which made it possible to recycle the system repeatedly. Under two different digestions (70 and 130 degrees C), 50 repetitive determinations of standard sodium oxalate (6.5 mg COD L(-1)) and D-glucose (7.2 mg COD L(-1)) were skillfully carried out with a slightly decreased baseline. The analytical frequency was 30 samples per hour for COD determination. The proposed method saved consumption of the used reagents, KMnO4 and H2SO4, and thus these wastes were extremely reduced. The obtained COD values with the proposed method were co-related with those provided by the manual standard method, but were fairly low owing to the insufficient digestion step.  相似文献   

8.
Zenki M  Tanishita A  Yokoyama T 《Talanta》2004,64(5):1273-1277
Ascorbic acid (AA) could be determined in large quantities of a co-existing oxidant. The incorporation of an on-line reagent regeneration step based on redox reaction eliminates the baseline drift in the procedure. This makes it possible to adopt a circulatory flow injection method (cyclic FIA) and to determine AA repetitively. The method is based on the reduction of iron(III) to iron(II) by the analyte, the reaction of the produced iron(II) with 1,10-phenanthroline (phen) in a weak acidic medium to form a colored complex, and the subsequent oxidation reaction of iron(II) to iron(III) by the co-existing peroxodisulfate. A solution (50 ml) of 3.0×10−4 mol l−1 ferric chloride, 9.0×10−4 mol l−1 phen and 5.0×10−2 mol l−1 ammonium peroxodisulfate in acetate buffer (0.2 mol l−1, pH 4.5) is continuously circulated at a constant flow rate of 1.0 ml min−1. Into this stream, an aliquot (20 μl) of the sample solution containing AA is quickly injected by means of a six-way valve. The complex formed is monitored spectrophotometrically (at 510 nm) in the flow system. The stream then returns to the reservoir after passing through a time-delay coil (50 m). The iron(II)–(phen)3 complex is oxidized to iron(III)–(phen)3 complex by peroxodisulfate which exists excessively in the circulating reagent solution. The proposed method allows as many as 300 repetitive determinations of 15 mg l−1 AA with only 50 ml reservoir solution. The contents of AA in commercial pharmaceutical products were analyzed to demonstrate the capability of the developed system.  相似文献   

9.
A reliable method for the determination of iodine and molybdenum in milk samples, using alkaline digestion with tetramethylammonium hydroxide and hydrogen peroxide, followed by quadrupole ICP-MS analysis, has been developed and tested using certified reference materials. The use of He+O2 (1.0 ml min(-1) and 0.6 ml min(-1)) in the collision-reaction cell of the mass spectrometer to remove (129)Xe+-- initially to enable the determination of low levels of 129I--also resulted in the quantitative conversion of Mo(+) to MoO2+ which enabled the molybdenum in the milk to be determined at similar mass to the iodine with the use of Sb as a common internal standard. In order to separate and pre-concentrate iodine at sub microg l(-1) concentrations, a novel method was developed using a cation-exchange column loaded with Pd2+ and Ca2+ ions to selectively retain iodide followed by elution with a small volume of ammonium thiosulfate. This method showed excellent results for aqueous iodide solutions, although the complex milk digest matrix made the method unsuitable for such samples. An investigation of the iodine species formed during oxidation and extraction of milk sample digests was carried out with a view to controlling the iodine chemistry.  相似文献   

10.
An amperometric sensor with a single working electrode for simultaneous determination of electro-inactive anions and cations, e.g. SO4(2-), Cl(-), NO3(-), Na(+), NH4(+), K(+), Mg(2+) and Ca(2+), was designed as a detector in ion chromatography. The modification of its working golden electrode was based on the incorporation of dodecyl sulfate into polydiphenylamine by electropolymerization of diphenylamine in the presence of sodium dodecylsulfate. In ion-exclusion/cation-exchange chromatography, a set of well defined peaks of these anions and cations was obtained at the working potential, +1.35 V (vs. saturated calomel electrode) using a citric acid solution as eluent. The common anions and cations in mineral water samples were determined using this ion-chromatographic system with satisfactory results.  相似文献   

11.
Haghighi B  Tavassoli A 《Talanta》2002,56(1):137-144
A flow injection method on the basis of gas phase molecular absorption is described for the determination of nitrite in the aqueous solution. 200 mul of nitrite solution is introduced into a carrier stream of distilled water. The carrier stream containing nitrite zone is reacted with a stream of hydrochloric acid (2 M). The stream is then segmented by O(2) gas. The produced gaseous products are purged into the O(2) segments, react with O(2) and are carried toward the gas-liquid separator. The gaseous phase is separated from the liquid stream by the use of home-made gas-liquid separator and then is swept into a home-made flow cell. The absorbance of gaseous phase is measured at 205 nm using a UV/VIS spectrophotometer. Under selected conditions, two linear ranges, up to 1000 mug ml(-1) and 1000-2000 mug ml(-1) of nitrite were obtained. The limit of detection was 7.5 mug ml(-1) NO(2)(-). The relative standard deviations of repeated measurements of 100 and 500 mug ml(-1) NO(2)(-) were 3.7 and 1.0%, respectively. Up to 30 samples h(-1) can be analyzed. Interferences in the proposed method were few and were readily overcome. The proposed method was successfully applied to the determination of nitrite in the spiked water samples, a number of meat products and urine.  相似文献   

12.
A divalent cation-selective electrode, which utilizes a lipophilic resin as a matrix for the sensing membrane, and which has long-term stability has been developed. The sensing membrane is a lipophilic acrylate resin which is impregnated with a solution of 1-decylalcohol and the calcium salt of bis[4-(1,1,3,3-tetramethylbutyl) phenyl] phosphate at concentrations of 0.08 g ml(-1) each. The electrode exhibited nearly equal selectivity to Ca(2+) and Mg(2+) ions and could be used as a water hardness sensor. The electrode shows a Nernstian response with a slope of 29 mV decade(-1) to both Ca(2+) and Mg(2+) ions in the concentration range from 10(-5) M to 10(-1) M and could be used in the pH range from 3 to 10 for the determination of 10(-3) M Ca(2+) and Mg(2+) solutions. The initial performance of the electrode could be maintained for 1 year, since the lifetime test of the electrode was conducted in tapwater at a continuous flow rate of 4 ml min(-1). The hardnesses of tapwater and upland soil extracts were determined using the developed electrode and the analytical results were in good agreement with those obtained by chelatometric titration using an EDTA solution as the titrant. A coefficient factor of correlation 0.998 was obtained between the electrode method and titrimetry. The long-term stability of the electrode was found to be due to strong affinity of 1-decylalcohol to the lipophilic acrylate resin.  相似文献   

13.
Ding MY  Tanaka K  Hu W  Hasebe K  Haddad PR 《The Analyst》2001,126(5):567-570
A non-suppressed conductivity detection ion chromatographic method using a weakly acidic cation-exchange column (Tosoh TSKgel OApak-A) was developed for the simultaneous separation and determination of common inorganic anions (Cl-, NO3- and SO4(2-)) and cations (Na+, NH4+, K+, Mg2+ and Ca2+). A satisfactory separation of these anions and cations on the weakly acidic cation-exchange column was achieved in 25 min by elution with a mixture of 1.6 mmol L-1 pyridine-2,6-dicarboxylic acid and 8.0 mmol L-1 18-crown-6 at flow rate of 1.0 mL min-1. On this weakly acidic cation-exchange resin, anions were retained by an ion-exclusion mechanism and cations by a cation-exchange mechanism. The linear range of the peak area calibration curves for all analytes were up to two orders of magnitude. The detection limits calculated at S/N = 3 ranged from 0.25 to 1.9 mumol L-1 for anions and cations. The ion-exclusion chromatography-cation-exchange chromatography method developed in this work was successfully applied to the simultaneous determination of major inorganic anions and cations in rainwater, tap water and snow water samples.  相似文献   

14.
Yokoyama Y  Sawaguchi N  Sato H 《The Analyst》2001,126(7):989-994
A successive non-suppressed ion chromatography (IC) system for the determination of common cations (Na+, K+, Mg2+, Ca2+) and anions (Cl-, Br-, NO3-, SO4(2-)) was developed, using two separation columns and a single eluent. 5-Sulfoisophthalic acid eluent was very suitable for such separations with a commercially available cation-exchange column for the mono- and di-valent cations and with an ODS column coated with cetyltrimethylammonium for the anions. Both cations and anions were detected with conductimetrically high sensitivity without any suppressor. After injecting an aliquot of sample solution, the solvent front from the cation-exchange column, including most of the anionic species, was firstly accumulated into the additional 2 ml accumulation loop for 60 s, while the cation IC was performed. Subsequently, the accumulated fraction was introduced into the anion-exchange column and chromatographed. Relative standard deviations (RSDs) of retention times and conductimetric area responses for common cations were within 6% and within 4%, respectively. The linear relationships between molar concentration and detector response ranged from 0.01 to 1.00 mM with r2 of 0.9994 for Na+, 0.9992 for K+, 0.9993 for Mg2+, and 0.9988 for Ca2+. The successive anion IC through the accumulating process was also quantitative, with 95% recovery or over for each analyte. The linear ranges were between 0.01 and 1.00 mM with r2 of 0.9996 for Cl-, 0.9997 for Br-, 0.9993 for NO3-, and 0.9984 for SO4(2-). The method was applied to the determination of common cations and anions in several mineral waters and a hot spring water.  相似文献   

15.
A flow-injection system with a Chelite-S(R) cationic resin packed minicolumn is proposed for the determination of trace levels of mercury in agroindustrial samples by cold vapor atomic absorption spectrometry. Improved sensitivity and selectivity are attained since mercuric ions are on-line concentrated whereas other potential interferents are discarded. With on-line reductive elution procedure, concentrated hydrochloric acid could be replaced by 10% w/v SnCl(2), in 6 M HCl as eluent. The reversed-intermittent stream either carries the atomic mercury to the flow cell in the forward direction or removes the residue from reactor/gas-liquid separator to a discarding flask in the opposite direction. Concentration and volume of reagent, acidity, flow rates, commutation times and potential interfering species were investigated. For 120 s preconcentration time, the proposed system handles about 25 samples h(-1) (50.0-500 ng l(-1)), consuming about 10 ml sample and 5 mg SnCl(2) per determination. The detection limit is 0.8 ng l(-1) and the relative standard deviation (RSD) (n=12) of a 76.7 ng l(-1) sample is about 5%. Results are in agreement with certified value of standard materials at 95% confidence level and good recoveries (97-128%) of spiked samples were found.  相似文献   

16.
Davey DE  Mulcahy DE  O'Connell GR 《Talanta》1990,37(7):683-687
A flow-injection method is described, in which phosphate standards are introduced into a reagent stream containing Cd(2+) ,resulting in the formation of Cd(3)(PO(4))(2). The associated reduction in free metal concentration is sensed by a cadmium-selective electrode. With the exception of major interference from iodide and moderate interference from bromide and thiocyanate, the system exhibits excellent response to phosphate and selectivity over several common anions in solutions buffered at pH 8.4. A maximum sampling rate of 160/hr is possible for phosphate standards in the concentration range 10(-1)-10(-1)M with a 10(-4)M Cd(2+) reagent stream at a total flow-rate (carrier and reagent stream combined) of 8.4 ml/min.  相似文献   

17.
Evaporative light-scattering detection (ELSD) was investigated for the direct determination of alkali and alkaline-earth cations by cation-exchange chromatography. Successful single run analysis of Na+, K+, Mg2+ and Ca2+ was achieved in 11 min on the Hamilton PRP-X200 column using an aqueous solution of ammonium formate as mobile phase under a salt concentration step gradient mode (20 mM and 100 mM). Surprisingly the use of ELSD reveals a weak retention of inorganic anions (Cl-, NO3-, SO4(2-)) onto the polymeric cation exchanger, which enables the simultaneous determination of inorganic anions (C1- and NO3-) associated with the cations analysed (Na+ and K+).  相似文献   

18.
The application of a barium ion-selective electrode for the determination of sulfate is reported. Titrations in the batch mode using the Gran's plot method [1] have been carried out. In the presence of a lithium acetate buffer and after the addition of isopropanol it has been possible to determine sulfate with a relative standard deviation (RSD) of 1.5%. The concentration range of the samples was 5–400 mg sulfate/l. Interfering ions were separated by cation-exchange. This indirect titration constituted the basis of a flow injection titration (FIA titration) system for the continuous determination of sulfate. By plotting the peakwidth vs. the logarithm of the sulfate concentration of the injected samples, linear calibration graphs in the range of 50–200 mg sulfate/l were obtained. In this system, the sample stream was pumped through an ion-exchange column, mixed with a buffer stream of lithium acetate and injected in a reagent stream of a BaCl2 solution. The resulting free Ba(II) concentration was monitored with a barium ion-selective electrode. The content of sulfate in ground and drinking water samples has been determined with a RSD between 1.2% and 1.3%.  相似文献   

19.
Zhan XQ  Li DH  Zheng H  Xu JG  Zhou YQ 《Talanta》2002,58(5):855-860
A sensitive fluorimetric method for the determination of nitrogen oxides (NO(x): NO+NO(2)) in air is described. Nitrogen dioxide (nitrogen monoxide was previously converted to nitrogen dioxide in oxide tubes) was aspirated through a fritted glass bubble at a flow rate of 500 ml min(-1) for 120 min and fixed as nitrite, using 0.1 N NaOH as a trapping solution with the empirical absorption efficiency 0.74 and the stoichiometric factor 0.5. The method is based on the fluorescence quenching of a red-region fluorescent reagent, tetra-substituted amino aluminum phthalocyanine (TAAlPc), after being diazotized by nitrite. Under optimal conditions the linear range of the calibration curve for nitrite is 1-40 ng ml(-1) (NO(2) 0.24-9.6 ppb, v/v). The detection limit is 0.34 ng ml(-1) for nitrite (NO(2) 0.08 ppb, v/v) and the relative standard deviation for six replicate measurements of 15 ng ml(-1) nitrite is 3.2%. The method has been applied to the determination of nitrogen oxides in the air with satisfactory results. Typical gaseous co-pollutants such as SO(2), H(2)S and HCHO did not interference the determination.  相似文献   

20.
Monser L  Sadok S  Greenway GM  Shah I  Uglow RF 《Talanta》2002,57(3):511-518
A direct spectrophotometric flow injection method for the simultaneous determination of nitrite and nitrate has been developed. The method is based on the oxidation of a phosphomolybdenum blue complex by the addition of nitrite and the decrease in absorbance of the blue complex is monitored at 820 nm. The injected sample is split into two segments. One of the streams was directly reacted with the above reagent and detected as nitrite. The other stream was passed through a copperised cadmium reductor column where reduction of nitrate to nitrite occurs, and the sample was then mixed with the reagent and passed through the cell of the spectrophotometer to be detected as nitrite plus nitrate. The conditions for the flow injection manifold parameters were optimised by experimental design and the concentration of nitrite and nitrate was determined in the linear range from 0.05 to 1.15 mug ml(-1) nitrite and 0.06 to 1.6 mug ml(-1) nitrate with a detection limit of 0.01 mug ml(-1) for nitrite and 0.025 mug ml(-1) for nitrate. The method is suitable for the simultaneous determination of nitrite and nitrate in fish and water samples with a sampling rate of 25+/-2 sample per hour.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号