首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The [η5-cyclopentadienyl-η6-pentamethylanilineiron]+ cation has been prepared from ligand exchange between ferrocene and pentamethylaniline. Acidic chlorides (CH3COCl, C6H5COCl) and sulfonyl chlorides (p-CH3C6H4SO2Cl, camphorsulfonyl-d10 chloride) react in situ with deprotonated species after treatment of this cation with t-BuOK in THF. An acid—base reaction between amide or sulfonamide derivatives and deprotonated species takes place and can limit the yield; the mechanism is discussed. Amide derivatives also have been prepared by direct action of acidic chlorides with [η5-C5H5Fe-η6-C6-(CH3)5NH2]+ in acetone solution. An optically active sulfonamide has been prepared.  相似文献   

2.
《Polyhedron》1986,5(10):1651-1653
The reaction of ArPCl2 (Ar = 2,4,6-t-Bu3C6H2) with K[Mo(CO)3(η-C5H5)] affords Ar(H)PP(Cl)Ar (1), ArP[Mo(CO)2(η-C5H5)]2 (2), ArPPAr, ArPH2 and Ar(H)PP(H)Ar. By means of X-ray crystallography, it was established that the Mo2P ring of 2 involves a planar phosphorus geometry, a slight degree of MoP multiple bonding, and a MoMo single bond. Thermolysis of the original reaction mixture produced the P2Mo ring compound ArPP(H)(Ar)[μ2-Mo(CO)2(η-C5H5)] (3). The structure of 3 was determined by X-ray diffraction.  相似文献   

3.
In the reaction of [C5H5Mn(CO)2(NO)] [X] ([X] = [BF4], [PF6]) with p-substituted triarylphosphines P(p-C6H4?Y)3 [Y = CF3, Cl, F, C6H5, CH3, OCH3, N(CH3)2] the asymmetric monosubstitution products [C5H5Mn(CO)(NO)P(p-C6H4?Y)3] [X] are formed, which can be converted into the neutral esters C5H5Mn(COOC10H19)(NO)P(p-C6H4?Y)3 by natrium menthoxide. The diastereoisomers (+)579? and (?)579?C5H5Mn(COOC10H19)(NO)P(p-C6H4?Y)3 are separated by fractional crystallisation and transformed into the enantiomeric salts (+)579? and (?)579-[C5H5Mn(CO)(NO)P(p-C6H4?Y)3] [X] by cleavage with HCl and precipitation with NH4PF6. The (+)579? and (?)579? rotating salts in the reaction with LiC6H5 yield the carbonyl addition products (+)579? and (?)579? C5H5Mn(COC6H5)(NO)P(p-C6H4?Y)3 and the ring addition products (+)579? and (?)579?(exo-C6H5)C5H5Mn(CO)(NO)P(p-C6H4?Y)3, which can be separated by chromatography.The salts (+)579? and (?)579?[C5H5Mn(CO)(NO)P(p-C6H4?Y)3] [X] and the cyclopentadiene complexes (+)579? and (?)579-(exo-C6H5)C5H5Mn(CO)(NO)P(p-C6H4?Y)3 are configurationally stable, whereas the esters (+)579? and (?)579?C5H5Mn(COOC10H19)(NO)P(p-C6H4?Y)3 and the benzoyl complexes (+)579? and (?)579?C5H5Mn(COC6H5)(NO)P(p-C6H4?Y)3 epimerise or racemise in solution.The rate of racemisation of the benzoyl compounds (+)579? and (?)579C5H5Mn(COC6H5)(NO)P(p-C6H4?Y)3 was measured polarimetrically in the temperature range 0–45° C. It turned out that electron-releasingsubstituents Y in the ligand P(p-C6H4?Y)3 increase the half-lives, whereas electron-attracting substituents decrease the half-lives. There is a linear correlation between the σ-constants of the substituents and the rate constants of the racemisation (reaction constant p = +2.14).  相似文献   

4.
Use of aqueous micellar solutions of dicationic surfactants with the general formula [R(CH3)2N(CH2)6N(CH3)2R]2+2Br (R = n-C10H21 to n-C16H33) as the reaction medium for the alkaline hydrolysis of phosphonic acid esters has revealed a strong catalytic effect of the surfactants, which can increase the reaction rate by two orders of magnitude. This effect depends on the surfactant structure, shows itself at low surfactant concentrations, and is substrate-specific. The effect of the micelles on the phosphonate hydrolysis rate is largely determined by the hydrophobicity factor.  相似文献   

5.
The N-ferrocenoyl amino acid ester derivatives FcCOR {Fc=(η5-C5H5)Fe(η5-C5H4)} where R=Gly(OMe) 1, Gly(OEt) 2, Gly(OBn) 3, l-Ala(OMe) 4, l-Ala(OEt) 5, l-Leu(OMe) 6, l-Leu(OEt) 7, l-Leu(OBn) 8, l-Phe(OMe) 9 and l-Phe(OEt) 10, were prepared by coupling ferrocene carboxylic acid with the appropriate amino acid ester starting materials using the 1,3-dicyclohexylcarbodiimide (DCC), 1-hydroxybenzotriazole (HOBt) protocol and these have been characterised by spectroscopic techniques. The electrochemical anion sensing behaviour of compounds 1-10 with several anions using a platinum microdisk working electrode is described, together with 1H NMR anion complexation studies. The X-ray single crystal structure of N-ferrocenoyl-l-alanine methyl ester 4 has been determined and contains two molecules which differ slightly in conformation in the asymmetric unit of space group P21 (No. 4); principal dimensions are amide N(H)CO 1.224(6) and 1.231(6) Å, ester CO 1.220(10) and 1.190(7) Å, with N-H?OC(amide) as the primary intermolecular hydrogen bond, N?O 2.992(6) and 2.971(6) Å and with graph set C(4).  相似文献   

6.
Xerogels containing residues of amide derivatives of phosphonic and thiophosphonic acids, ≡Si(CH2)3NHP(S, O)(OC2H5)2 (functional group concentration of 1.3–2.2 mmol/g) have been prepared by a sol-gel method. It has been shown that xerogels having a developed porous structure (with specific surface areas of 240–485 m2/g, pore volumes of 0.20–0.50 cm3/g, and pore diameters of 3.6–6.5 nm) are formed at tetraethoxysilane-to-trifunctional silane ratios of 4: 1 (and above) and 6: 1 (and above) for the derivatives of phosphonic and thiophosphonic acids, respectively. The IR and 13C CP/MAS NMR spectroscopy data have demonstrated that the surface layer of the xerogels contains not only (thio)phosphonic acid residues, but also silanol groups and water molecules participating in hydrogen bonding. The 29Si CP/MAS NMR spectroscopy data have indicated that structural groups are, for the most part, contained in structural units T3 [(≡SiO)3Si(CH2)3NHP(O, S)(OC2H5)2] and T2 [(≡SiO)2Si(OR)[(CH2)3NHP(O, S)(OC2H5)2] (R = H or C2H5).  相似文献   

7.
A series of metal-containing vinylic monomers of the type LnM(COC6H4CH=CH2) and LnM (COCH=CHC6H5) [LnM = (η5-C5H5)Fe(CO)2, (η5-C5Me5)Fe(CO)2 and (η5-C5H5)W(CO)3] were prepared by the reaction of the appropriate metal anion with either 4-vinylbenzoyl chloride or cinnamoyl chloride. (η5-C5H5)(CO)2FeCOCH=CH2 was prepared by the reaction of Na[(η5-C5H5)Fe(CO)2] and acryloyl chloride, whereas the compound (η5-C5H5)(CO)2Fe(C6H4CH=CH2) was prepared via a transmetallation reaction using a palladium catalyst. All compounds were fully characterized using FTIR, 1H and 13C NMR spectroscopy and mass spectrometry. Copyright © 1998 John Wiley & Sons, Ltd.  相似文献   

8.
The complexes [Rh(η3-C3H4R)(η5-C5R′5)L]+BF4- (R  1-Me, R′  H, Me; R  2-Me, R′  H) (L  C5H5N, Ph3P, Ph3As) have been prepared from Rh(η3-C3H4R)(η5-C5R′5)Cl and AGBF4 in acetone, followed by reaction with the stoicheiometric quantity of L. The 1H and 13C NMR spectra of the salts are reported and discussed.  相似文献   

9.
Treatment of RuCl2(PPh3)3 with 6-dimethylaminopentafulvene in THF in the presence of water produced(η5-C5H4CHO) RuCl(PPh3)2, which was reduced by NaBH4 to give the Ru–H···HO dihydrogen bonded complex(η5-C5H4CH2OH) RuH(PPh3)2. The dihydrogen bonded complex(η5-C5H4CH2OH)RuH(PPh3)2 could also be synthesized by the reduction of complex(η5-C5H4CHO)RuH(PPh3)2, which was obtained by the reaction of RuHCl(PPh3)3 with 6-dimethylaminopentafulvene in the presence of water. The analogous dihydrogen bonded osmium complex(η5-C5H4CH2OH)OsH(PPh3)2 was similarly prepared. Single crystal structures and DFT calculations support the presence of intra-molecular H···H interaction, with separations of around 1.9 to 2.0 .  相似文献   

10.
The reaction of phosphino- and arsino-ketene complexes of tungsten η5-C5H5(CO[P(CH3)3] XW[η1-R2Y(C6H4CH3)CCO] (X = Cl, I; Y = P, As) with trialkylphosphines does not lead to a substitution of the phosphino- and arsinoketene ligands but to a nucleophilic attack of the phosphine at the central ketene carbon and a concomitant substitution of the halogene ligand via the former ketene oxygen, affording the cationic compelex η5-C5H5(CO)[P(CH3)3]W[η2-R2YC-(C6H4CH3C(PR′3)O]X and P,O and As,O chelate ligands. The substitution products R2Y(C6H4CH3)CCO and η5-C5H5(CO)[P(CH3)3]XW(PR′3) initially expected could only be obtained as a result of a selective rearrangement/elimination reaction as shown in the case of the arsenic substituted complex η5-C5H5(CO)(PMe3)IWAs(CH3)2C(C6H4CH3)C=O.  相似文献   

11.
A new family of three-legged piano stool structured organometallic compounds containing the η5-cyclopentadienylruthenium(II)/iron(II) fragments {M(η5-C5H5) (DPPE)}+, {Ru(η5-C5H5)(PPh3)2}+ and {Ru(η5-C5H5)(TMEDA)}+ with coordinated thiophene based chromophores, namely 5-(2-thiophen-2-yl-vinyl)-thiophene-2-carbonitrile (L1) and 5-[2-(5-Nitro-thiophen-2-yl)-vinyl]-thiophene-2-carbonitrile (L2) has been synthesized and fully characterized by 1H, 13C, 31P NMR, IR and UV-Vis spectroscopies. Also, electrochemical studies were carried out by cyclic voltammetry and all experimental data are interpreted and compared with related compounds under the scope of NLO properties. Compounds [Ru(η5-C5H5)(DPPE)(NC(C4H2S)C(H)C(H)(C4H3S))][CF3SO3] (1′Ru) [Fe(η5-C5H5)(DPPE)(NC(C4H2S)C(H)C(H)(C4H3S))] [PF6] (1Fe) and [Ru(η5-C5H5)(DPPE)(NC(C4H2S)C(H)C(H)(C4H2S)NO2)][CF3SO3] (4′Ru) were also crystallographically characterized.  相似文献   

12.
The reaction of (η5-C5H5)W(CO)2(NO), 6W, with P(CH3)3 proceeds rapidly at 25°C to give (η5-C5H5)W(CO)(NO)[P(CH3)3], 7W. The rate of formation of 7W was found to be 4.48 × 10?2M?1 [6W] [P(CH3)3] at 25.0°c in THF. In neat P(CH3)3 at ?23°C, 6W is converted to (η1-C5H5)W(CO)2(NO)[P(CH3)3]2, 8W. In dilute solution, 8W decomposes to initially give a 2:1 mixture of 6W and 7W. The mixture is then converted to 7W. The reaction of (η5-C5H5)Mo(CO)(NO), 6Mo, with P(CH3)3 is 6.1 times faster than that of the tungsten analog.  相似文献   

13.
The tertiary phosphine π-C5H5Fe(CO)2P(C6H5)2 reacts with a suspension of Fe2(CO)9 in benzene to give the dinuclear complex π-C5H5Fe2P(C6H5)2(CO)6. This compound is also obtained by nucleophilic attack of [π-C5H5Fe(CO)2] on Fe(CO)4-[P(C6H5)2Cl] in tetrahydrofuran. Irradiation of a benzene solution of π-C5H5Fe2-P(C6H5)2(CO)6 with ultraviolet light affords π-C5H5Fe2P(C6H5)2(CO)5 which contains both a bridging carbonyl and a bridging phosphido group. The unstable bridged sulphido derivatives π-C5H5Fe2SR(CO)6 (R = CH3 and C6H5) and π-C5H5Fe2(t-C4H9S)(CO)5 are similarly obtained employing π-C5H5Fe(CO)2SR as ligand. The reactions of π-C5H5Fe2P(C6H5)2(CO)5 with tertiary phosphines and phosphites yield three types of products depending on the reaction conditions and the ligand involved. Examples include π-C5H5Fe2P(C6H5)2(CO)4P(C6H5)3, a mono-substituted derivative of π-C5H5Fe2P(C6H5)2(CO)5, and π-C5H5Fe2P(C6H5)2(CO)5P(C2H5)3 and π-C5H5Fe2P(C6H5)2(CO)4[P(OCH)3)3]2, mono- and bis-substituted derivatives of π-C5H5Fe2P(C6H5)2(CO)6, respectively. The reaction of π-C5H5Fe2P(C6H52(CO)5 with (C6H5)2PCH2P(C6H5)2 in benzene under reflux affords [π-C5H5Fe2P(C6H5)2(CO)4](C6H5)2PCH2P(C6H5)2 in which the ditertiary phosphine bridges two iron atoms.  相似文献   

14.
The reaction between Fe(CO)5, and group V donor ligands L, (L  PPh3, AsPh3, SbPh3, PMePh2, PMe2Ph, Asme2Ph, P(C6H11)3, P(n-Bu)3, P(i-Bu)3, P(OPh)3, P(OEt)3, P(OMe)3) in the presence of [(η5-C5Me5Fe(CO)2]2 (R  H, Me) or [(η5-C5Me5)Fe(CO)2]2 as catalyst in refluxing toluene, rapidly gives the complexes Fe(CO)4L in yields > 85%. The reaction rate is essentially independent of the nature of L for [(η5-C5Me5)Fe(CO)2]2 as catalyst. For the other catalysts, the rate is influenced predominantly by the steric properties of L. These results are interpreted in terms of the interaction between the catalyst and the ligand L to give derivatives of the type (η5-C5H4R)2Fe2,(CO)3,(L). These derivatives were also found to catalyse the reaction between Fe(CO)5, and L. The complexes [(η-C5H4R)Fe(CO)2]2 (R  H, Me) and [(η5-C5Me5)Fe(CO)2]2 also catalyse the reaction between Mn2(CO)10 and PPh3 to give Mn2(CO)8- PPh3)2 in > 80% yield.  相似文献   

15.
The tertiary phosphines P(C6H5)2R [RM π-C5H5)(CO)2 M(π-C5H5(CO)2 (M = Fe or Ru)] readily effect the displacement of the chloro group in [M′(φ-C5H5)(CO)2Cl] (M′ = Fe or Ru) to give bridged cationic species of the type [MM′(φ-C5H5)2(CO)4P(C6H5)]+. Treatment of [Fe2(CO)9] with P(C6H5)2R [RRu(φ-C5H5)(CO)2] leads to the formation of the neutral mixed-metal derivatives [FeRu(φ-C5H5)(CO)6P(C6H5)2] and [FeRu(φ-C5H5)(CO)5P(C6H5)2].  相似文献   

16.
The dinuclear complex [(h5-1-CH3-3-C6H5C5H3)Fe(CO)2]2 was synthesized by reaction of Fe2(CO)9 with 1-methyl-3-phenylcyclopentadiene; it was converted to (h5-1-CH3-3-C6H5C5H3)Fe(CO)2CH3 by reduction with sodium amalgam and addition of CH3l, and thence to (h5-1-CH3-3-C6H5C5H3)Fe(CO)[P(C6H5)3] (COCH3) (I) by reaction with P(C6H5)3. The acetyl I was separated into two diastereomerically related pairs of enantiomers. Ia and Ib, by a combination of column chromatography on alumina and crystallization from benzene/pentane. The photochemical decarbonylation of Ia and Ib in benzene or THF solution was examined by 1H NMR spectroscopy. This reaction proceeds with high stereospecificity (>84% retention or inversion) at the iron center to yield (h5-1-CH3-3-C6H8C5H3)Fe(CO)[P(C6H5)3]CH3(II), enriched in the diastereomerically related pairs of enantiomers, IIa and IIb, respectively. Since IIa and IIb epimerize under the photolytic conditions of decarbonylation, the actual stereospecificity of the conversion of I to II is higher than 84%, and likely 100%. This is supported by the data from kinetic studies of the decarbonylation of I and the epimerization of II, carried out under identical photolytic conditions. The implications of the foregoing results to the mechanism of the decarbonylation are considered. Also described herein is the synthesis of other complexes with two asymmetric centers of the general formula (h5-cyclopentadienyl)Fe(CO)(L)(COR) and (h5-cyclopentadienyl)Fe(CO)(L)R that contain either an unsymmetrically substituted h5-cyclopentadienyl ring or a chiral tertiary phosphine.  相似文献   

17.
The reaction between phenyl phosphonic dichloride (C6H5P(O)Cl2) and synthetic calcium hydroxy- and fluorapatite has been investigated. The presence of mono- or polymeric (C6H5PO) fragment bound to hydroxyapatite was evidenced by IR, and solid-state 31P NMR spectroscopy. X-ray powder analysis has shown that the apatitic structure remains unchanged during the reaction. In contrast, no reaction was found using fluorapatite. According to the results found for these two different apatites a mechanism was proposed for the formation of covalent P-O-P bonds as the result of a reaction between the C6H5P(O)Cl2 organic reagent and (HPO4) and/or OH ions of the hydroxyapatite.  相似文献   

18.
The compounds (π-C6H6)Ru(R)Cl(PPh3) (RCH3, C6H5), (π-C6H6)RuCl(π-C3H5) and [(π-C6H6)Ru(π-C5H5)]Cl are described. The 31P NMR spectra of a series of tertiary phosphine complexes of the π-benzeneruthenium system are also reported.  相似文献   

19.
Oxidation of the cyclohexadienyl complex Fe(η5-C5H5)(1-5-75-6-exo-C5H5-C6H6) (2) by (Ph3C)PF6 (CH2Cl2, from −30 to +20 °C) occurs as two concurrent processes: elimination of an H atom from the cyclohexadienyl ligand and replacement of an H atom in the cyclopentadienyl ring by a CPh3 fragment. A mixture of cationic complexes [Fe(η5-C5H5) (η6-Ph-C5H5]+ (1+) and [Fe(η5-C5H4CPh3) (η6-Ph-C5H5]+ (4+) (4 +) with PF6 anions is obtained. Deprotonation of the mixture of 1+ and 4+ complexes under the action of Bu t OK inm-xylene followed by boiling of the reaction mixture gives phenylferrocene (7) as the product of η66 haptotropic rearrangement. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, NO. 5, pp. 1045–1047, May, 1997.  相似文献   

20.
《Polyhedron》1986,5(6):1227-1231
Adducts of bis-p-biphenyl tin(IV) dichloride of types (p-C6H5-C6H4)2SnCl2·2L and (p-C6H5-C6H4)2SnCl2·L1 (where 2L = pyridine, piperidine, α-, β- or γ-picolines, isoquinoline or morpholine and L1 = 2,2′-bipyridine or 1,10 phenanthroline) have been prepared by the reaction of bis-p-biphenyl tin(IV) dichloride with the corresponding ligand in 1:2 and 1:1 molar ratios in acetone. IR, 1H NMR and Mössbauer studies indicate that the biphenyl group occupies in the trans position, except in morpholine, where it is in the cis position.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号