首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Melamine-formaldehyde (MF) resin microcapsules containing decabromodiphenyl ether (DBDPO) with better thermal stability were successfully prepared by in situ polymerization, DBDPO being the core material and MF resins being the wall materials. Chemical structure of the prepared microcapsules was characterized by Fourier-transform infrared spectroscopy (FTIR) and X-ray photoelectron spectroscopy (XPS). Morphologies and thermal properties were also investigated by scanning electron microscopy (SEM) and thermogravimetric analysis (TGA), respectively. The results indicated that MF microcapsules with DBDPO particles prepared in this study showed better thermal stability, and could be used as effective flame retardant even for the resins which should be processed at temperatures higher than 350 °C.  相似文献   

2.
Structure and thermal stability of microencapsulated phase-change materials   总被引:11,自引:0,他引:11  
A series of microcapsules containing n-octadecane with a urea-melamine-formaldehyde copolymer shell were synthesized by in-situ polymerization. The surface morphology, diameter, melting and crystallization properties, and thermal stability of the microcapsules were investigated by using FTIR, SEM, DSC, TGA and DTA. The diameters of the microcapsules are in the range of 0.2–5.6 m. The n-octadecane contents in the microcapsules are in the range of 65–78wt%. The mole ratio of urea-melamine has been found to have no effect on the melting temperature of the microcapsules. Two crystallization peaks on the DSC cooling curve have been observed. The thermal damage mechanisms are the liquefied n-octadecane leaking from the microcapsule and breakage of the shell due to the mismatch of thermal expansion of the core and shell materials at high temperatures. The thermal stability of materials can be enhanced up to 10 °C by the copolymerization of urea, melamine and formaldehyde in a mole ratio 0.2:0.8:3. The thermal stability of 160 °C heat-treated microcapsules containing 8.8% cyclohexane can be further enhanced up to approximately 37 °C.  相似文献   

3.
A series of heat energy storage microcapsules was prepared using melamine-formaldehyde resin as the shell material and the mechanical properties of the shell were investigated. A phase change material whose melting point was 24 °C was used as core and the quantity of heat involved in phase transition was 225.5 J/g. Average diameter of the microcapsules varied from 5 to 10 μm, and the globular surface was smooth and compact. The mechanical properties of the shell were evaluated by observing the surface morphological structure change after application of pressure by means of scanning electron microscopy. When the mass ratio of the core and shell material is 3:1, a yield point of about 1.1×105 Pa was found and when the compression was increased beyond this point the microcapsules showed plastic behavior. This has been attributed to the cross-link density and to the high degree of reaction of the shell material. Different yield points subsequently reflected differences in the mechanical behavior. It was also found that the mechanical intensity of double-shell microcapsules was better than that of single shelled ones.  相似文献   

4.
 The preparation of polymer microcapsules of well defined size in the range of 10–50 μm with different shell thickness to core diameter ratios is described. An aerosol of monodisperse droplets of a homogeneous ternary liquid system which contained a hydrophobic component and a hydrophilic component dissolved in a high-volatile mutual solvent, was produced by dispersing with a vibrating-orifice aerosol generator. After the evaporation of the solvent in a nitrogen atmosphere the particles demix and form a two-phase droplet of core-shell type. These droplets were illuminated with UV light and polymerized to highly monodisperse microcapsules with a solid polymer shell and a liquid core. The properties of the resulting particles (size, size distribution, shell thickness, shape and surface characteristics) were investigated by scanning electron microscopy, Raman spectroscopy on single optically levitated particles, and confocal Raman micro spectroscopy. The microcapsules were highly monodisperse and have spherical shape. Received: 24 July 1996 Accepted: 29 August 1996  相似文献   

5.
Microencapsulated n-octadecane with melamine–formaldehyde resin (MF) shell was synthesized by in situ polymerization. Ammonium chloride was used to reduce the residual formaldehyde content of microencapsulated phase change materials (microPCMs) caused by the inherent characteristics of MF. Moreover, microPCMs were heat-treated at 160 °C for 30 min. The surface morphology of the microPCMs fabricated at various microencapsulation periods was examined, and the shell thickness was measured. The effects of heat treatment on the surface morphology, residual formaldehyde content, phase change properties, and thermal stability of the microcapsules were systematically investigated. The globular surface of microcapsules fabricated at microencapsulation period of 120 min was smooth and compact with an average diameter about 2.2 μm, and the shell thickness was ranged from 30 to 70 nm. The thermal stability of heat-treated microcapsules enhanced significantly as microencapsulation period increased; in addition, the residual formaldehyde content of microcapsules decreased from 125 ± 1 mg/kg to 19 ± 1 mg/kg.  相似文献   

6.
SiO2/TiO2 composite microspheres with microporous SiO2 core/mesoporous TiO2 shell structures were prepared by hydrolysis of titanium tetrabutylorthotitanate (TTBT) in the presence of microporous silica microspheres using hydroxypropyl cellulose (HPC) as a surface esterification agent and porous template, and then dried and calcined at different temperatures. The as-prepared products were characterized with differential thermal analysis and thermogravimetric (DTA/TG), scanning electron microscopy (SEM), X-ray diffraction (XRD), nitrogen adsorption. The results showed that composite particles were about 1.8 μm in diameter, and had a spherical morphology and a narrow size distribution. Uniform mesoporous titania coatings on the surfaces of microporous silica microspheres could be obtained by adjusting the HPC concentration to an optimal concentration of about 3.2 mmol L−1. The anatase and rutile phase in the SiO2/TiO2 composite microspheres began to form at 700 and 900 °C, respectively. At 700 °C, the specific surface area and pore volume of the SiO2/TiO2 composite microspheres were 552 and 0.652 mL g−1, respectively. However, at 900 °C, the specific surface area and pore volume significantly decreased due to the phase transformation from anatase to rutile.  相似文献   

7.
Synthesis of intermetallic zinc antimonide phases via low temperature solution route was investigated. Trial experiments were carried out under inert atmosphere at 70 °C using metallic Zn, SbCl3 and NaBH4 as reactants and tetrahydrofuran (THF), dimethylsulfoxide (DMSO) as organic media. Powder X-ray analysis confirmed the nucleation and growth of ZnSb phases in presence of excess Zn. SEM analysis revealed the existence of core-shell structure comprising of Zn core and Sb shell. Such particles get transformed into Zn4Sb3 crystalline phases upon thermal treatment at 300 °C/6 h in a silica tube closed under high secondary vacuum.  相似文献   

8.
Nanosized aluminum nitride hollow spheres were synthesized by simply heating aluminum nanoparticles in ammonia at 1000 °C. The as-synthesized sphere shells are polycrystalline with cavity diameters ranging from 15 to 100 nm and shell thickness from 5 to 15 nm. The formation mechanism can be explained by the nanoscale Kirkendall effect, which results from the difference in diffusion rates between aluminum and nitrogen. The Al nanoparticles served as both reactant and templates for the hollow sphere formation. The effects of precursor particle size and temperature were also investigated in terms of product morphology. Room temperature cathode luminescence spectrum of the nanosized hollow spheres showed a broad emission band centered at 415 nm, which is originated from oxygen related luminescence centers. The hollow structure survived a 4-h heat treatment at 1200 °C, exhibiting excellent thermal stability.  相似文献   

9.
Novel polyphenylene oxide (PPO) microcapsules filled with epoxy resins (PPOMCs) were synthesized by in situ polymerization technology with 2, 6‐dimethy phenol as shell materials and diglycidyl ether of bisphenol A epoxy resins as core materials. The structures and morphologies of PPOMCs were characterized using Fourier‐transform infrared spectroscopy, micro‐confocal Raman microscope, laser scanning confocal microscopy, scanning electron microscopy and optical microscopy, respectively. The thermal properties of PPOMCs were investigated using differential scanning calorimetry and thermogravimetric analysis. The influences of different processing parameters such as the weight ratio of shell material to core material, kind of surfactant and reaction temperature on the morphologies and sizes of PPOMCs were investigated. Preliminary investigation on application of PPOMCs to thermosetting resins 4,4′‐bismaleimidodiphenylmethane/O,O′‐diallylbisphenol A (BMI/BA) system was conducted. Results indicate that PPOMCs can be synthesized successfully. The sizes and surface morphologies of PPOMCs may be significantly affected by different processing parameters. PPOMCs can be well prepared at about 30°C, and they depend strongly on the kind of surfactant and the weight ratio of shell material to core material. PPOMCs basically exhibit high thermal stability when the temperature is below 258°C. The addition of PPOMCs can improve the mechanical properties and maintain the thermal properties of BMI/BA system. The released core materials from PPOMCs may repair the matrix cracks through the polymerization of epoxy resins initiated by curing agent. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
Preparation and properties of a thermo-sensitive latex film   总被引:1,自引:0,他引:1  
Polymer particles with hydrophobic core and hydrophilic shell were prepared via a three-step method. First, poly(butyl methacrylate-co-methyl methacrylate) (p-(BMA-MMA)) latex was prepared through emulsion polymerization. Then, a shell of poly(glycidyl methacrylate) (p-GMA) was introduced around the p-(BMA-MMA) particles by using a redox initiation system under kinetically controlled conditions. Finally, part of the epoxy groups existing in the shell were converted into quaternary ammonium salts, resulting in an ionic hydrophilic shell. The core-shell particles could be redispersed in water to form a stable emulsion. The contact angle of the core-shell latex film with water was around 16° at 25 °C, which became larger than 90° after the film was heated at 150 °C for a short period of time. This showed that the latex film was completely switched from hydrophilicity to hydrophobicity by the action of heat. Additionally, the latex film before heat treatment could be easily washed away from the substrate with neutral water, but it could no longer be removed after the heat treatment. When an IR dye with the maximum absorption at 830 nm was incorporated into the film, it became sensitive to LD laser emitting at 830 nm and gave negative image after exposed by LD laser and developed with neutral water. This showed that the latex film might find uses in chemical-free thermal laser imaging applications.  相似文献   

11.
Poly(methyl methacrylate) (PMMA) microcapsules were prepared by the in situ polymerization of methyl methacrylate (MMA) and N,N′-methylenebisacrylamide on the surface of calcium carbonate (CaCO3) particles, followed by the dissolution of the CaCO3 core in ethylenediaminetetraacetic acid solution. The microcapsules were characterized using fluorescence microscopy, atomic force microscopy, scanning electron microscopy, and Fourier transform infrared spectroscopy. The average sizes of the CaCO3 particles and PMMA capsules were 3.8 ± 0.6 and 4.0 ± 0.6 μm, respectively. A copolymer consisting of MMA and rhodamine B-bearing MMA was also used to prepare microcapsules for fluorescent microscopy observations. Fluorescein isothiocyanate-labeled bovine serum albumin was enclosed in the PMMA microcapsules and its release properties were studied.  相似文献   

12.
Ag-doped polyaniline (PANI) nanoparticles are prepared via doping-dedoping-redoping with the thiol group in mercaptosuccinic acid (MSA) providing the linkage between PANI molecules and Ag atoms. Ag-MSA-doped PANI maintains the electrical conductivity well above the room-temperature value of 3.0 S/cm up to 220 °C, reaching its maximum (9.0 S/cm) at 180 °C. In addition, Ag-MSA-doped PANI nanoparticles show remarkable stability against repeated thermal aging at 120 °C. The room-temperature conductivity, in fact, increases by a factor of ∼3 after 3 cycles of thermal aging. The enhanced stability against repeated thermal aging is attributed to the formation of uniformly distributed Ag nanoparticles within the PANI particles upon heating.  相似文献   

13.
The current demand for environmentally degradable copolymers has led to the use of novel degradable copolyesters. A series of copolyesters based on bis-2-hydroxyethyl terephthalate and l-lactic acid oligomers were synthesized by melt polycondensation [Olewnik E, Czerwiński W, Nowaczyk J, Sepulchre M-O, Tessier M, Salhi S, et al. Synthesis and structural study of copolymers of l-lactic acid and bis(2-hydroxyethyl terephthalate). Eur Polym J, in press]. Hydrolytic degradation of copolymers containing 16.8-52.9 mole ratio of l-lactic acid units was carried out in two buffered solutions at two different temperatures: phosphate buffer solution (pH 7.40) at 45 °C and phosphate-citric buffer solution (pH 7.35) at 60 °C. Degradation of copolyesters was studied by incubating samples in powder form in a concentrated solution from 30 to 180 days.The copolymers were characterized by various analytical techniques. The thermal properties, morphology and structural changes during controlled hydrolysis were studied by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) for determining melting points, heats of melting and decomposition temperatures of investigated copolyesters. 1H NMR spectroscopy was used to observe the decomposition of the polyesters.  相似文献   

14.
The ageing and thermal degradation of polymer thin films derived from the essential oil of Lavandula angustifolia (LA) fabricated using plasma polymerisation were investigated. Spectroscopic ellipsometry and Fourier transform infrared (FTIR) spectroscopy were employed to monitor the optical parameters, thickness and chemical structure of the polyLA films fabricated at various RF powers over a period of 1400 h. The bulk of the degradation under ambient conditions was found to occur within the first 100 h after fabrication. The thermal degradation of the polyLA films was also investigated using the ellipsometry and FTIR. An increase in thermal stability was found for films fabricated at increased RF power levels. Between 200 and 300 °C, the properties indicate that a phase change occurs in the material. Samples annealed up to 405 °C demonstrated minimal residue, with retention ranging between 0.47 and 2.2%. A tuneable degradation onset temperature and minimal residue post-anneal demonstrate that the polyLA films are excellent candidates for sacrificial material in air gap fabrication.  相似文献   

15.
In this paper, the shape evolution and thermal stability of Ag nanoparticles (NPs) on spherical SiO2 substrates were investigated by means of in situ transmission electron microscopy (TEM) imaging and differential scanning calorimetry (DSC). The initial Ag NPs at room temperature were semispherical-like, with an average size of 9 nm in half-height width, well-dispersed on spherical SiO2 substrates. No obvious shape change was observed when the semispherical NPs of Ag were heated at temperature lower than 550 °C. The shape of the semispherical Ag NPs changed gradually into a spherical one in the temperature range of 550-700 °C, where surface diffusion and surface premelting took place. When the heating temperature was increased up to 750 °C, the spherical Ag NPs were found to desquamate from the substrates due to the decreases of the contact area and the binding force between Ag NPs and SiO2 substrates. A possible mechanism for the desquamation of Ag NPs from the SiO2 sphere surface is proposed according to the results of in situ TEM observation and DSC analysis.  相似文献   

16.
A novel strategy for the fabrication of microcapsules is elaborated by employing biomacromolecules and a dissolvable template. Calcium carbonate (CaCO(3)) microparticles were used as sacrificial templates for the two-step deposition of polyelectrolyte coatings by surface controlled precipitation (SCP) followed by the layer-by-layer (LbL) adsorption technique to form capsule shells. When sodium alginate was used for inner shell assembly, template decomposition with an acid resulted in simultaneous formation of microgel-like structures due to calcium ion-induced gelation. An extraction of the calcium after further LbL treatment resulted in microcapsules filled with the biopolymer. The hollow as well as the polymer-filled polyelectrolyte capsules were characterized using confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM), and scanning force microscopy (SFM). The results demonstrated multiple functionalities of the CaCO(3) core - as supporting template, porous core for increased polymer accommodation/immobilization, and as a source of shell-hardening material. The LbL treatment of the core-inner shell assembly resulted in further surface stabilization of the capsule wall and supplementation of a nanostructured diffusion barrier for encapsulated material. The polymer forming the inner shell governs the chemistry of the capsule interior and could be engineered to obtain a matrix for protein/drug encapsulation or immobilization. The outer shell could be used to precisely tune the properties of the capsule wall and exterior. [Diagram: see text] Confocal laser scanning microscopy (CLSM) image of microcapsules (insert is after treating with rhodamine 6G to stain the capsule wall).  相似文献   

17.
Poly(vinyl chloride)/layered double hydroxide (LDH) composite was prepared by mixing 4 wt% Zn2Al-CO3-LDH with PVC and fluxing at 180 °C. The thermal decomposition behaviour of the LDH + PVC composite in air and nitrogen environments was systematically investigated. We found that mixing Zn2Al-CO3-LDH into PVC facilitates dehydrochlorination from ca. 300 to 270 °C but reduces the reaction extent to leave more chlorine on the polyene backbones both in air and N2. We have also found that at 400-550 °C, both in air and N2, LDH assists the formation of char-like materials and decreases the release of volatile hydrocarbons. From 550 to 800 °C, the char-like materials are mostly retained in N2 while they are almost completely thermo-oxidized (burned) in air. Thus, addition of Zn2Al-CO3-LDH to PVC does not increase the thermal stability, but does promote charring to retard the generation of flame. The influence of LDH on PVC thermal properties has been also addressed mechanically.  相似文献   

18.
Chitosan/gelatin (C/G) microcapsules containing triclosan were prepared by a spray drying method. The core material, triclosan (TS) dissolved in octyl salicylate (OS), were emulsified in an aqueous solution containing variable ratios of chitosan/gelatin. The microcapsules were obtained by spray-drying the emulsions. On the scanning electron micrographs, the microcapsules were spherical and exhibited a core and shell morphology. The thermograms of the microcapsules showed no evidence for the melting of TS, suggesting that TS remained dissolved in the cores of the microcapsules and did not exist as a solid crystalline even after dry microcapsules were formed. According to the results of microelectrophoresis study, the point of zero charge of the microcapsules occurred around pH 9.0 and a higher content of chitosan in the microcapsule wall resulted in a higher positive charge of zeta potential. The degree of release of TS and OS from the C/G microcapsules in an aqueous solution of hydroxypropyl-beta-cyclodextrin (HP-beta-CD) was investigated. When chitosan is included in the wall of microcapsules, the degree of release was suppressed. This indicates that chitosan forms a more compact wall than gelatin. On the other hand, TS was released much more than OS. The preferred release of TS is probably due to the higher solubility of TS in the HP-beta-CD solution.  相似文献   

19.
A polymerizable hindered amine light stabilizer (HALS) 1,2,2,6,6-pentamethylpiperidin-4-yl acrylate (PMPA) was synthesized through transesterification of 1,2,2,6,6-pentamethylpiperidin-4-ol (PMP) with methyl acrylate (MA). Core-shell latex particles containing HALS moieties in the shell phase were prepared by two-stage seeded emulsion polymerization from n-butyl acrylate (BA), methyl methacrylate (MMA) and PMPA. The Fourier transformed infrared (FTIR) and nuclear magnetic resonance (1H NMR) analysis showed that PMPA monomer was successfully prepared and was effectively involved in the polyacrylate particles. The surface composition was studied by X-ray photoelectron spectroscopy (XPS), and the results indicated that HALS-containing groups could be distributed on the surfaces of the particles. Transmission electron microscopy (TEM) analysis revealed that the particles obtained presented a core-shell structure with a particle size around 100 nm. Two glass transition temperatures (Tg), assigned to the core phase and the shell phase of the particles, respectively, were observed for both HALS-containing and HALS-free particles, as determined by differential scanning calorimetry (DSC). In addition, the Tg value for the shell phase of HALS-containing particles was 13 °C lower than that of HALS-free particles, indicating the presence of random copolymer between MMA monomer and PMPA comonomer in the shell phase. The thermogravimetry analysis (TGA) and differential thermal gravimetric (DTG) results showed that HALS-containing particles provided an improvement in thermal stability in comparison to HALS-free particles.  相似文献   

20.
Semi-interpenetrating polymer networks (SIPNs) of polyurethane (PU) and poly(methyl methacrylate) (PMMA) in different weight ratios viz., 90/10, 70/30, 60/40 and 50/50 were prepared. The SIPNs were characterized for physico-mechanical properties like density, tensile strength and elongation at break. Thermal stability of IPNs was measured using thermogravimetric analysis (TGA). From the TGA thermograms it was noticed that all IPNs are stable up to 325 °C and undergo three-step thermal degradation in the temperature ranges 251-400, 378-508 and 445-645 °C for first, second and third steps, respectively. Thermal degradation kinetic parameters like activation energy (Ea) were calculated using Broido, Coats-Redfern and Horowitz-Metzger models. The values obtained by Broido and Horowitz-Metzger methods showed concurrency, whereas Coats-Redfern method showed relatively lower values. Surface morphology measured using scanning electron microscope (SEM) showed two-phase morphology for all the IPNs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号