首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
Methylsilicone resin/polyhedral oligomeric silsesquioxane (POSS) composites with various proportions of POSS monomer were synthesized by the reaction of functionalized TriSilanolIsobutyl-POSS macromonomer with hydroxyl-terminated methylsilicone resin. The structures of the obtained hybrid polymers were characterized with Fourier-transformed infrared (FT-IR) and transmission electron microscopy (TEM). The FT-IR spectra suggested successful bonding of TriSilanolIsobutyl-POSS and methylsilicone resin. TEM analysis showed that POSS can dissolve in methylsilicone resin at the molecular level. The influences of TriSilanolIsobutyl-POSS on the thermal stability and degradation behavior of methylsilicone resin were studied by thermogravimetric analysis (TGA), solid-state 29Si NMR and X-ray photoelectron spectroscopy (XPS). All these techniques showed that TriSilanolIsobutyl-POSS incorporation results in increased decomposition temperatures and oxidation resistance, primarily by reducing the effect of silanol end groups on the thermolysis through condensation reaction of Si-OH groups and partial loss of isobutyl followed by the formation of an inorganic SiO2 layer to prevent methylsilicone from further degradation.  相似文献   

2.
Octaphenylsilsesquioxane (PH‐POSS) and octa(γ‐methacryloxypropyl)silsesquioxane (MA‐POSS) were successfully synthesized by hydrolytic condensation of phenyltrichlorosilane and γ‐methacryloxypropyltrimethoxysilane, and characterized by Fourier transform infrared (FT‐IR), 1H and 29Si nuclear magnetic resonance (NMR), and matrix‐assisted laser desorption/ionization‐time of flight (MALDI‐TOF) mass spectrum. Morphology, degradation behavior, thermal, and mechanical properties of hybrid composites were studied by transmission electron microscopy (TEM), polarized optical microscopy (POM), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), surface contact angle (SCA), tensile, and impact testing. Domains of PH‐POSS and MA‐POSS dispersed in the matrix with a wide size distribution in a range of 0.1–0.5 µm, while PH‐POSS exhibited a preferential dispersion. Because of the possible homopolymerization of MA‐POSS during the melt blending, the glass transition temperature of polycarbonate (PC)/MA‐POSS composites remained nearly unchanged with respect to PC/PH‐POSS composites that showed a depression of Tg due to the plasticization effect. It is interesting to note that the incorporation of POSS retarded the degradation rates of PC composites and thus significantly improved the thermal stabilities. Si? O fractions left during POSS degradations were a key factor governing the formation of a gel network layer on the exterior surface. This layer possessed more compact structures, higher thermal stabilities, and some thermal insulation. In addition, percentage residues at 700°C (C700) significantly increased from 10.8% to 15.8–22.1% in air. Fracture stress of two composites showed a slight improvement, and the impact strength of them decreased monotonically with the increase of POSS loading. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

3.
The mechanism of thermal degradation of several substituted polyhedral oligomeric silsesquioxanes (POSS) cages is studied in this work.Hydrogen POSS and methyl POSS shows incomplete sublimation on heating, both in inert atmosphere and in air. Isobutyl and octyl substituted POSS undergo an almost complete evaporation when heated in inert atmosphere. In air, oxidation competes with volatilization, producing a considerable amount of silica-like residue on heating up to 800 °C.Phenyl POSS shows a higher thermal stability than saturated aliphatic POSS and limited volatility, producing a ceramic residue at high yield on heating in nitrogen, composed of a silica containing a considerable amount of free-carbon. A lower amount of residue is shown after heating in air, corresponding to the POSS Si-O fraction.A vinyl POSS cage/network resin is also studied, in comparison to above materials, showing the highest ceramic yield.  相似文献   

4.
Thermal degradation studies of polyurethane/POSS nanohybrid elastomers   总被引:2,自引:0,他引:2  
Reported here is the synthesis of a series of polyurethane/POSS nanohybrid elastomers, the characterisation of their thermal stability and degradation behaviour at elevated temperatures using a combination of thermogravimetric Analysis (TGA) and thermal volatilisation analysis (TVA). A series of PU elastomer systems have been formulated incorporating varying levels of 1,2-propanediol-heptaisobutyl-POSS (PHIPOSS) as a chain extender unit, replacing butane diol. The bulk thermal stability of the nanohybrid systems has been characterised using TGA. Results indicate that covalent incorporation of POSS into the PU elastomer network increases the non-oxidative thermal stability of the systems. TVA analysis of the thermal degradation of the POSS/PU hybrid elastomers have demonstrated that the hybrid systems are indeed more thermally stable when compared to the unmodified PU matrix; evolving significantly reduced levels of volatile degradation products and exhibiting a ∼30 °C increase in onset degradation temperature. Furthermore, characterisation of the distribution of degradation products from both unmodified and hybrid systems indicate that the inclusion of POSS in the PU network is directly influencing the degradation pathways of both the soft and hard-block components of the elastomers: The POSS/PU hybrid systems show reduced levels of CO, CO2, water and increased levels of THF as products of thermal degradation.  相似文献   

5.
The effect of acid-treated multi-walled carbon nanotubes (MWCNTs) on thermo-oxidative stability and degradation behavior of silicone rubber (SR) was evaluated. Raman microscopy, Fourier transformed infrared spectroscopy, X-ray photoelectron spectroscopy and thermogravimetric (TG) analysis were performed to characterize the surface states of MWCNTs samples. The results demonstrated that after acid treatment the nanodefects and surface oxygen-containing groups (mainly hydroxyl and carboxyl groups) were formed and the number of them was gradually increased by increasing the treatment time. Then these MWCNTs were embedded into SR matrix. Furthermore, the thermo-oxidative stability and degradation behavior of MWCNTs/SR composites were studied using thermogravimetric/infrared spectrometry (TG-IR). Thermo-oxidative stability test in air revealed that the degradation of SR, at relatively low temperature, was mainly due to the oxidation of Si-CH3 side groups and the generation of free radicals. This behavior was hindered by the MWCNTs’ surface nanodefects and hydroxyl groups, as proved by TG-IR study which revealed that the amount of carbonyl compounds was reduced more than 60%, compared with that of neat SR. Therefore, acid treatment led a better thermo-oxidative stability of MWCNTs/SR. For 4hAT-MWCNTs/SR, with maximum hydroxyl groups on MWCNTs surface, the Ti (defined as the temperature for 5% mass loss) of it is increased by 34.8 °C compared to that of neat SR, and even increased by 18.5 °C compared with that of raw-MWCNTs/SR.  相似文献   

6.
Three different polyhedral oligomeric silsesquioxanes (POSS), trisilanolphenyl polyhedral oligomeric silsesquioxane (T‐POSS), octaaminophenyl polyhedral oligomeric silsesquioxanes (OAPS), and octaphenyl polyhedral oligomeric silsesquioxanes (OPS) were incorporated into phenolic resin (PR), respectively; PR/POSS composites were successfully prepared, and the properties of PR/POSS composites were studied. The limiting oxygen index (LOI), cone calorimeter, and thermal gravimetric analysis (TGA) were used for the estimation of flame retardancy and thermal stability. Oxyacetylene flame test and flexural strength test were used to study the ablative and mechanical properties of the PR/POSS composites. The results indicated that T‐POSS was more effective in improving the flame retardancy of PR than OAPS or OPS. Meanwhile, compared with pure PR, the second line ablation rates of PR/4% T‐POSS, PR/4% OAPS, and PR/4% OPS were significantly reduced by 53.3%, 61.9%, and 40.0%, respectively. In addition, the thermal stability and flexural strength of PR/4% T‐POSS were significantly higher than that of all other PR composites.  相似文献   

7.
The thermal degradation of the epoxy system diglycidyl ether of bisphenol A (DGEBA n=0) and m-xylylenediamine (mXDA) containing different concentrations of polyhedral oligomeric silsesquioxanes (POSS) nanoparticles was studied by thermogravimetric analysis in order to determine the influence of both, the POSS concentration and the curing cycle on the degradation process and to compare it with the results for the non modified system. Glass transition temperatures for the same systems were also determined by differential scanning calorimetry. Different behaviors have been observed, depending on the POSS concentration and on the curing selection.  相似文献   

8.
Thermal degradation of epoxy composites filled with various carbon materials (thermally expanded graphite, multiwalled carbon nanotubes) was studied. The dynamics of the thermal degradation of epoxy composites was evaluated by thermogravimetric analysis in the temperature range of 55–700°С (heating rate 10 deg min–1) in an oxidizing medium. Carbon fillers were studied by scanning electron microscopy, transmission electron microscopy, and low-temperature nitrogen adsorption. The influence of the composite preparation procedure on its thermal stability was determined. The type of filler significantly influences the thermal oxidative degradation of the composites.  相似文献   

9.
Recent studies on organically modified clays (OMCs) have reported enhanced thermal stabilities when using imidazolium-based surfactants over the typical ammonium-based surfactants. Other studies have shown that polyhedral oligomeric silsesquioxanes (POSS) also improve the thermal properties of composites containing these macromers. In an attempt to utilize the beneficial properties of both imidazolium surfactants and POSS macromers, a dual nanocomposite approach to prepare OMCs was used. In this study, the preparation of a new POSS-imidazolium surfactant and its use as an organic modifier for montmorillonite are reported. The purity, solubility, and thermal characteristics of the POSS-imidazolium chloride were evaluated. In addition, several OMCs were prepared by exchanging the Na+ with POSS imidazolium cations equivalent to 100%, 95%, 40%, 20%, and 5% of the cation exchange capacity of the clay. The subsequent OMCs were characterized using thermal analysis techniques (DSC, SDT, and TGA) as well as 29Si NMR to determine the POSS content in the clay interlayer both before and after thermal oxidation degradation. Results indicate the following: (1) the solvent choice changes the efficiency of the ion-exchange reaction of the clay; (2) self-assembled crystalline POSS domains are present in the clay interlayer; (3) the d-spacing of the exchanged clay is large (3.6 nm), accommodating a bilayer structure of the POSS-imidazolium; and (4) the prepared POSS-imidazolium exchanged clays exhibit higher thermal stabilities than any previously prepared imidazolium or ammonium exchanged montmorillonite.  相似文献   

10.
Divinyl-hexa[(trimethoxysilyl)ethyl]-POSS (DVPS) as an octavinyl-POSS derivative was first prepared. A series of novel polydimethylsiloxane (PDMS)/DVPS hybrid materials as room temperature vulcanized (RTV) silicone rubber were prepared. The chemical incorporation of novel POSS into hydroxyl-terminated PDMS system by hydrolytic condensation reaction was verified by attenuated total reflection (ATR) infrared spectroscopy. Thermal degradation, thermo-oxidative stability and mechanical properties of these novel RTV silicone rubbers were studied by means of thermogravimetric analysis and tensile testing. The results exhibited significantly enhanced effects on the thermal stabilities and mechanical properties as compared to the PDMS polymer prepared with tetraethoxysilane (TEOS). The observed improvements in thermal properties could be attributed to the effective three-dimensional network structures resulting from the structure of DVPS. The thermal decomposition of the RTV silicone rubbers in nitrogen was also monitored by TGA coupled with real-time FTIR, and the degradation residues were also characterized by FTIR. It was found that the POSS cross-linker facilitated the formation of cross-links in the degradation residues. The striking improvement in mechanical properties could be attributed to the synergistic action of the structure of three-dimensional multi-arm cross-linker (vinyl-POSS derivative), the plasticization of self-cross-linking Vinyl-POSS derivative and perfect distribution of vinyl-POSS derivative.  相似文献   

11.
The morphology and thermal properties of Allylisobutyl Polyhedral Oligomeric Silsesquioxane (POSS)/Polybutadiene (PB) nanocomposites prepared through anionic polymerization technique were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The results of XRD, SEM and TEM showed that the aggregation of POSS in PB matrix occurred obviously, forming crystalline domains and the size of POSS particles increased with increasing POSS content. The DSC and TGA results indicated that the glass transition temperature (T g) of the nanocomposites was significantly increased and the maximum degradation temperature (T dmax) of nanocomposites was slightly increased compared with pure PB, implying an increase in thermal stability.  相似文献   

12.
The aim of this work was to study the effect of tris(3-nitrophenyl) phosphine (NPPh3), which showed a good thermal stability and carbon-forming ability, on the flame retardancy and thermal degradation mechanism of epoxy resins. A series of diglycidyl ether of bisphenol A (DGEBA) loaded with tris(3-nitrophenyl) phosphine (NPPh3) were prepared. It was found that NPPh3 can effectively improve the flame retardancy and thermal stability of the composites. When the loading amount of NPPh3 was 14%, the LOI value of the DGEBA composites was 29.2% (about 1.53 times the corresponding value of the original DGEBA resin). Thermal stability was studied by thermogravimetric analysis, and the results showed that the addition of NPPh3 can improve char formation of this system both in nitrogen and in air atmosphere. Specifically, its combustion residue at 800 °C in nitrogen atmosphere was about 4.26 times of the original resin. Differential scanning calorimetry indicated that NPPh3 slightly decreased the glass transition temperature of epoxy resins. Additionally, the gaseous degradation products were analyzed by thermogravimetric analysis/infrared spectrometry, providing insight into the thermal degradation mechanism. Scanning electron microscopy and Fourier transform infrared were brought together to evaluate the morphology and structure of the residual char obtained after combustion.  相似文献   

13.
The thermal degradation and thermal stability of rice husk flour (RHF) filled polypropylene (PP) and high-density polyethylene (HDPE) composites in a nitrogen atmosphere were studied using thermogravimetric analysis. The thermal stability of pure PP and HDPE was found to be higher than that of wood flour (WF) and RHF. As the content of RHF increased, the thermal stability of the composites decreased and the ash content increased. The activation energy of the RHF filled PP composites increased slowly in the initial stage until α=0.3 (30% of thermal degradation region) and thereafter remained almost constant, whereas that of the RHF filled HDPE composites decreased at between 30 and 40 mass% of RHF content. The activation energy of the composites was found to depend on the dispersion and interfacial adhesion of RHF in the PP and HDPE matrix polymers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

14.
High density polyethylene composites with curaua fibres were prepared using an intermeshing co-rotating extruder and two different coupling agents. The thermal stability of the components was studied by thermogravimetric and differential scanning analysis, as well as by the oxidation induction time. Maleic anhydride grafted polyethylene, used as coupling agent, affected the composite stability more markedly than did poly(ethylene-co-vinyl acetate). However, oxidation induction times were analogous for composites with and without coupling agents. Results also indicated that a higher fibre-matrix interaction precludes the crystallinity enhancement caused by the fibre.  相似文献   

15.
The mechanisms of the thermal degradation of polyhedral oligomeric octaphenylsilsesquioxane (OPS), octa(nitrophenyl)silsesquioxane (ONPS), and octa(aminophenyl)silsesquioxane (OAPS) were investigated. The –NO2 or –NH2 substituents on the phenyl group affected the mechanism of the POSS thermal degradation. The thermal stabilities of OPS, ONPS, and OAPS were characterized by TG and FTIR. Thermal degradation of OPS included mainly the degradation of caged polyhedral oligomeric silsesquioxane structures and phenyl groups. Nitro or amino substituents decreased its thermal stability. The thermal degradation processes of OPS, ONPS, and OAPS differed. Phenyl groups and cyclobutadiene were observed in the OPS degradation products. Oxygen radicals that caused intensive CO2 release between 350 and 450 °C were generated by the degradation of ONPS –NO2. OAPS released mainly aminophenyl groups at 370 °C, whereas a small number of phenyl groups decomposed at 500 °C. The OAPS reactivity could enhance the thermal stability of POSS structure in the polyimide OAPS composites.  相似文献   

16.
Novel hybrid systems based on maleic anhydride-grafted polypropylene (PPgMA) and home-made Ti-containing amino polyhedral oligomeric silsesquioxanes (Ti-POSS-NH2) have been prepared by one-step reactive blending, and their properties have been compared with those of systems based on a non-reactive POSS (POSS). The occurrence of a reaction between PPgMA and the reactive POSS molecules has been assessed by Fourier Transform Infrared Resonance (FTIR) measurements, whereas dispersion of POSS into the polymer was evaluated by Scanning Electron Microscopy (SEM), showing a nanometric dispersion only for the reactive POSS. Thermo-oxidative behaviour was studied by Thermogravimetric Analysis (TGA), showing a delayed volatilization of the PPgMA/Ti-POSS-NH2 with respect to both PPgMA/POSS and pristine PPgMA, which is attributed to the chemical activity of Ti in Ti-POSS-NH2. To highlight the mechanism of the hybrid system decomposition, samples which underwent a thermal treatment at 250 °C, i.e. the onset temperature for polymer matrix decomposition in thermo-oxidative conditions, have been studied by FTIR and X-Ray Photoelectron Spectroscopy (XPS) measurements.  相似文献   

17.
A modified silicon-containing arylacetylene resin with a well-defined organic-inorganic POSS functionality was successfully synthesized by Huisgen azide-alkyne 1,3-dipolar cycloaddition.The POSS hybridized resin exhibits excellent thermal properties which were characterized by differential scanning calorimetry(DSC) and thermogravimetric analyses (TGA).Scanning electron microscope(SEM) was used to characterize fracture surface of the hybridized polymer.The results show that phase separation occurs.The POSS moieties are aggregated each other in the polymer to form 200-400 nm domains.  相似文献   

18.
The isothermal and non-isothermal decompositions of cellulose nanofiber (CNF) and microfibrillated cellulose (MFC)-filled polypropylene (PP) composites were evaluated and compared with microcrystalline cellulose (MCC)-filled composites by means of thermogravimetric analysis (TG). X-ray diffraction was employed to evaluate crystallinity of the composites. The degree of maximum thermal degradation (ultimate DTG peak value) increased and thermal degradation onset temperature decreased as the cellulose content increased because the thermal stability of cellulose fillers is lower than that of neat PP, but the thermal degradation of the composite was hindered at higher temperature conditions because of the increased residual mass content of the cellulose nanofibril fillers compared to the matrix polymer. The isothermal residual mass of the cellulose nanofibril-filled PP composites under melt blending and injection molding temperatures was decreased marginally by incorporation of the cellulose reinforcement but still exhibited considerable isothermal stability. The raw materials and composites examined in this study were not affected by the manufacturing process temperatures utilized to produce the composites. The MCC decreased the composite crystallinity while the nano-sized cellulose (CNF and MFC) did not appear to have an effect on crystallinity.  相似文献   

19.
Copolymerizations of styrene and the polyhedral oligomeric silsesquioxane (POSS)–styryl macromonomer 1‐(4‐vinylphenyl)‐3,5,7,9,11,13,15‐heptacyclopentylpentacyclo [9.5.1.13,9.15,15.17,13] octasiloxane have been performed with CpTiCl3 in conjunction with methylaluminoxane. Random copolymers of syndiotactic polystyrene (sPS) and POSS have been formed and fully characterized with 1H and 13C NMR, gel permeation chromatography, differential scanning calorimetry, and thermogravimetric analysis. NMR data reveal a moderately high syndiotacticity of the polystyrene backbone consistent with this use of CpTiCl3 as a catalyst and POSS loadings as high as 24 wt % and 3.2 mol %. Thermogravimetric analysis of the sPS–POSS copolymers under both nitrogen and air shows improved thermal stability with higher degradation temperatures and char yields, demonstrating that the inclusion of the inorganic POSS nanoparticles makes the organic polymer matrix more thermally robust. The polymerization activity and thermal stability are also compared with those of reported atactic polystyrene–POSS copolymers. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 885–891, 2002; DOI 10.1002/pola.10175  相似文献   

20.
The thermal degradation of a series of three novel bridged polyhedral oligomeric silsesquioxanes (POSS)/polystyrene (PS) nanocomposites, at different POSS content (3%, 5% and 10%), was studied in both inert (flowing nitrogen) and oxidative (static air) atmospheres, in order to investigate the effects of this new dumbbell-shaped structure on the filler–polymer interaction and then on the thermal stability of the obtained materials. Nanocomposites were synthesized by in situ polymerization of styrene in the presence of POSS which has not polymerizable groups, aiming to obtain well dispersed POSS/PS systems. The actual filler concentration in the obtained nanocomposites was checked by 1H NMR spectroscopy. Scanning electron microscopy (SEM) and FTIR spectroscopy evidenced the presence of filler–polymer interactions. Degradations were carried out into a thermobalance, in the scanning mode, at various heating rates, and the characteristic parameters of thermal stability, namely temperature at 5% mass loss (T5%) and the activation energy (Ea) of degradation, of the various nanocomposites were determined. The results were discussed and interpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号