首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以聚苯氧基磷酸联苯二酚酯(PBPP)与聚磷酸铵(APP)组成复合阻燃剂,对环氧树脂(EP)进行阻燃改性.通过氧指数(LOI)、垂直燃烧(UL-94)、热失重(TGA)、锥形量热(CONE)和扫描电镜(SEM)等方法研究改性环氧树脂的阻燃性能和阻燃机理.结果表明,PBPP/APP体系对EP具有较好的阻燃性能,阻燃剂添加量为10%时能使环氧树脂的氧指数提高到29.6%,垂直燃烧等级达到UL94 V-0级,残炭量大大增加;平均热释放速率下降45.7%,热释放速率峰值下降51.0%,有效燃烧热平均值下降21.1%;TGA、CONE、SEM等综合分析显示了PBPP/APP改性后的环氧树脂比纯环氧树脂具有更高的热稳定性,燃烧后能够形成连续、致密、封闭、坚硬的焦化炭层,在聚合物表面产生有效覆盖、隔绝了氧气,改善了环氧树脂的燃烧性能.  相似文献   

2.
A series of UV‐curable flame retardant resins was obtained using epoxy acrylate (EA) modified with 1‐oxo‐4‐hydroxymethyl‐2,6,7‐trioxa‐1‐phosphabicyclo[2.2.2]octane (PEPA). The flammability was characterized by limiting the oxygen index (LOI), UL 94 and cone calorimeter, and the thermal degradation of the flame retardant resins was studied using thermogravimetric analysis (TGA) and real time Fourier transform infrared (RTFTIR). The results indicated that the flame retardant efficiency increases and the heat release rate (HRR) decreases greatly with the content of PEPA. The TG data showed that the modified epoxy acrylates (MEAs) have lower initial decomposition temperatures and higher char residues than pure EA. The RTFTIR study indicates that the MEAs have lower thermal oxidative stability than the pure EA. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A novel phosphorus-containing oligomeric flame retardant, poly(DOPO substituted hydroxyphenyl methanol pentaerythritol diphosphonate) (PDPDP) was synthesized and applied to flame retarded epoxy resins. The thermal degradation behaviors of flame retarded epoxy composites with PDPDP were investigated by thermogravimetric analysis (TGA), thermogravimetric analysis/infrared spectrometry (TG-FTIR) and direct pyrolysis-mass spectrometry (DP-MS) techniques. The identification of pyrolysis fragment ions provided insight into the flame retardant mechanism. The results showed that the mass loss rate of the EP/PDPDP composites was clearly lower than pure EP when the temperature was higher than 300 °C in air or nitrogen atmosphere. The results also suggested that the main decomposition fragment ions of the EP/PDPDP composite were H2O, CO2, CO, benzene, and phenol. The incorporation of PDPDP can reduce the release of combustible gas and induce the formation of char layer, hence the fire potential hazard was reduced.  相似文献   

4.
A novel phosphorus‐containing compound diphenyl‐(1, 2‐dicarboxylethyl)‐phosphine oxide defined as DPDCEPO was synthesized and used as a flame retardant curing agent for epoxy resins (EP). The chemical structure of the prepared DPDCEPO was well characterized by Fourier transform infrared spectroscopy, and 1H, 13C and 31P nuclear magnetic resonance. The DPDCEPO was mixed with curing agent of phthalic anhydride (PA) with various weight ratios into epoxy resins to prepare flame retardant EP thermosets. The flame retardant properties, combustion behavior and thermal analysis of the EP thermosets were respectively investigated by limiting oxygen index (LOI), vertical burning tests (UL‐94), cone calorimeter measurement, dynamic mechanical thermal analysis and thermogravimetric analysis (TGA) tests. The surface morphologies and chemical compositions of the char residues for EP thermosets were respectively investigated by scanning electron microscopy and X‐ray photoelectron spectroscopy (XPS). The water resistant properties of the cured EP were evaluated by putting the samples into distilled water at 70°C for 168 hr. The results revealed that the EP/20 wt% DPDCEPO/80 wt% PA thermosets successfully passed UL‐94 V‐0 flammability rating and the LOI value was as high as 33.2%. The cone test results revealed that the incorporation of DPDCEPO effectively reduced the combustion parameters of the epoxy resin thermosets, such as heat release rate and total heat release. The dynamic mechanical thermal analysis test demonstrated that the glass transition temperature (Tg) decreased with the increase of DPDCEPO content. The TGA results indicated that the incorporation of DPDCEPO promoted the decomposition of epoxy resin matrix ahead of time and led to a higher char yield and thermal stability at high temperatures. The surface morphological structures and analysis of the XPS of the char residues of EP thermosets revealed that the introduction of DPDCEPO benefited the formation of a sufficient, compact and homogeneous char layer with rich flame retardant elements on the epoxy resin material surface during combustion. The mechanical properties and water resistance of the cured epoxy resins were also measured. After water resistance tests, the EP/20 wt% DPDCEPO/80 wt% PA thermosets retained excellent flame retardancy, and the moisture adsorption of the EP thermosets decreased with the increase of DPDCEPO content in EP thermosets because of the existence of the P–C bonds and the rigid aromatic hydrophobic structure in DPDCEPO. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

5.
磷酸酯双三聚氰胺盐阻燃环氧树脂的燃烧性能和阻燃机理   总被引:2,自引:0,他引:2  
以季戊四醇、三氯氧磷、三聚氰胺为原料合成了[1-氧-4-亚甲基-2,6,7-三氧-1-磷杂双环(2,2,2)辛烷]磷酸酯双三聚氰胺盐阻燃剂,将该阻燃剂加入到环氧树脂中制成阻燃环氧树脂。用TG、SEM、EDS和FT-IR进行表征,并采用极限氧指数法和垂直燃烧法测试材料的燃烧性能,结果表明,极限氧指数和垂直燃烧性能随阻燃剂含量的增加而提高,当阻燃剂含量达到30%时,氧指数达到36,垂直燃烧性能达到V-0级;阻燃剂对材料的成炭量影响不大,但改变了炭层的组成和物理性质,燃烧过程中形成的含有P、O、N的粘性高聚物将炭层连接在一起,起到了隔热、隔氧作用,发挥了凝聚相阻燃作用。此外,阻燃环氧树脂在燃烧过程中有NH3等不燃气体逸出,有效地稀释了气相中的氧气浓度,发挥了气相阻燃作用,对材料的阻燃有协同作用。  相似文献   

6.
磷系阻燃环氧树脂研究   总被引:2,自引:0,他引:2  
王淑波  王利生 《化学进展》2007,19(1):159-164
本文对近年来国内外9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)衍生物的合成及其应用于阻燃环氧树脂的方法进行介绍,并对所显示的阻燃性、热性能等作了概述和比较。将反应型磷系阻燃剂DOPO衍生物引入环氧树脂基体结构中形成阻燃持久、无卤、低烟、无毒、热稳定性好的新型含磷环氧树脂。  相似文献   

7.
Multifunctional epoxy resins with excellent, thermal, flame‐retardant, and mechanical properties are extremely important for various applications. To solve this challenging problem, a novel highly efficient multielement flame retardant (PMSBA) is synthesized and the flame‐retardant and mechanical properties of modified epoxy resins are greatly enhanced without significantly altering their and thermal properties by applying the as‐synthesized PMSBA. The limiting oxygen index value reaches up to 29.6% and could pass the V‐0 rating in the UL‐94 test with even low P content (0.13%). Furthermore, cone calorimetry results demonstrate that 30.3% reduction in the peak heat release rate for the sample with 10.0 wt% PMSBA is achieved. X‐ray photoelectron spectroscopy and scanning electron microscopy indicate that Si‐C, Si‐N, and phosphoric acid derivative can be transformed into a multihole and intumescent char layer as an effective barrier, preserving the epoxy resin structure from fire. More importantly, mechanical properties such as impact strength, tensile strength, and flexural strength are also increased by 63.86%, 33.54%, and 15.65%, respectively, which show the incorporation of PMSBA do not deteriorate the mechanical properties of modified epoxy resins. All the results show that PMSBA is a promising strategy for epoxy resin with satisfactory, thermal, flame‐retardant, and mechanical properties.  相似文献   

8.
Phosphorus‐containing novolac–epoxy systems were prepared from novolac resins and isobutyl bis(glycidylpropylether) phosphine oxide (IHPOGly) as crosslinking agent. Their curing behavior was studied and the thermal, thermomechanical, and flame‐retardant properties of the cured materials were measured. The Tg and decomposition temperatures of the resulting thermosets are moderate and decrease when the phosphorous content increases. Whereas the phosphorous species decrease the thermal stability, at higher temperatures the degradation rates are lower than the degradation rate of the phosphorous‐free resin. V‐O materials were obtained when the resins were tested for ignition resistance with the UL‐94 test. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 3516–3526, 2004  相似文献   

9.
《中国化学快报》2022,33(8):4026-4032
To obtain high-efficiency flame retardancy of epoxy resins, a cyclophosphazene derivative tri-(o-henylenediamino)cyclotriphosphazene (3ACP) was successfully synthesized and used as a curing agent for the thermosetting of an epoxy resin system. The flame retardant properties, thermal stability, and pyrolysis mechanism of the resultant thermosets were investigated in detail. The experiments indicated that the synthesized thermoset achieved a UL-94 V-0 rate under a vertical burning test as well as a limiting oxygen index (LOI) of 29.2%, which was able to reach V-0 even when a small amount of 3ACP was incorporated. Scanning electronic microscopic observation demonstrated that the char residue of the thermosets was extremely expanded after the vertical flame test. Thermal analysis showed that the samples had a lower initial decomposition temperature when 3ACP was introduced into the epoxy resin systems. This indicates that the carbonization ability of the thermosets was significantly improved at elevated temperatures. In addition, the incorporation of 3ACP can effectively suppress the release of combustible gases during the pyrolysis process, and the decomposition of E-44/DDS-3ACP curing systems also promotes the formation of polyphosphoramides charred layer in the condensed phase. The investigation on the chemical structures of both the gaseous and condensed phase pyrolysis process confirmed the flame-retardant mechanism of the 3ACP-cured epoxy resins. Therefore, the nonflammable halogen-free epoxy resin developed in this study has potential applications in electric and electronic fields for environment protection and human health.  相似文献   

10.
新型侧基含磷共聚酯的阻燃和热降解动力学   总被引:3,自引:0,他引:3  
利用动态热重分析法(TG)研究了聚酯(PET )及侧基含磷共聚酯(FR-PET)在不同升温速率下的热稳定性及热降解动力学, 并通过极限氧指数法(LOI)考察了FR-PET的阻燃性能; 采用Flynn-Wall-Ozawa方法分析了PET和FR-PET的热降解表观活化能; 利用Coast-Redfern方法通过对不同机理模型的选取, 确定了PET和FR-PET热降解动力学机理及其模型, 得出了主降解阶段的非等温动力学方程及热降解速率曲线图. 研究结果表明, 侧基含磷单元的引入提高了聚酯的阻燃性能, 侧基上的P—C和P—O键易断裂, 从而降低了聚酯的热稳定性. PET和FR-PET的热降解表观活化能(0.1≤α≤0.85)分别为194-227和184-209 kJ/mol; PET和FR-PET热降解反应均属于受减速形α-t曲线控制的反应级数机理, 其机理函数为f(α)=3(1-α)2/3(0.1≤α≤0.85). 侧基含磷单元的引入对PET的主降解阶段的热降解速率并无实质上的影响. 侧基含磷共聚酯的凝聚相阻燃作用有限, 可能以气相阻燃机理为主发挥阻燃作用.  相似文献   

11.
Boron‐containing novolac resins were prepared through the modification of a commercial novolac resin with different contents of bis(benzo‐1,3,2‐dioxaborolanyl) oxide. Their thermal and flame‐retardant properties were measured. Then, they were crosslinked with hexamethylenetetramine, and their thermal, thermodynamomechanical, and flame‐retardant properties were evaluated. Their modification degree was related to the segmental motion of the materials. The crosslinking of the boron‐modified novolac resins with hexamethylenetetramine was slower and not as extensive as that of commercial novolac resins because the nitrogen from intermediate species coordinated with boron. The thermal degradation of the boron‐containing novolac resins generated boric acid at high temperatures and gave an intumescent char that slowed the degradation and prevented it from being complete. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3503–3512, 2006  相似文献   

12.
A novel flame retardant curing agent for epoxy resin (EP), i.e., a DOPO (9,10-dihydro-9-oxa-10-phosphaphenan-threne-10-oxide)-containing 4,4'-bisphenol novolac (BIP-DOPO) was synthesized and characterized by Fourier transform infrared (FTIR), 1H NMR, 31P NMR spectroscopy, and gel permeation chromatography. The epoxy resin cured by BIP-DOPO itself or its mixture with a commonly used bisphenol A-formaldehyde novolac resin (NPEH720) was prepared. The flame retardancy of the cured EP thermosets were studied by limiting oxygen index (LOI), UL 94 and cone calorimeter test (CCT), and the thermal properties by thermal gravimetric analysis (TGA) and differential scanning calorimetry (DSC). The results show that the cured epoxy resin EPNP/BI/3/1, which contains 2.2% phosphorus, possesses a value of 26.2% and achieves the UL 94 V-0 rating. The data from cone calorimeter test demonstrated that the peak release rate, average heat release rate, total heat release decline sharply for the flame retarded epoxy resins, compared with those of pure ones. DSC results show that the glass-transition temperatures of cured epoxy resins decrease with increasing phosphorus content. TGA indicates that the incorporation of BIP-DOPO promotes the decomposition of epoxy resin matrix ahead of time and leads to higher char yield. The surface morphological structures of the char residues reveal that the introduction of BIP-DOPO benefits to the formation of a continuous and solid char layer on the epoxy resin material surface during combustion.  相似文献   

13.
The focus of this study is an investigation of the effect of oxidation state of phosphorus in phosphorus-based flame retardants on the thermal and flame retardant properties of polyurea and epoxy resin. Three different oxidation states of phosphorus (phosphite, phosphate and phosphine oxide) additives, with different thermal stabilities at a constant phosphorus content (1.5 wt.%) have been utilized. Thermal and flame retardant properties were studied by TGA and cone calorimetry, respectively. The thermal stability of both polymers decreases upon the incorporation of phosphorus flame retardants irrespective of oxidation state and a greater amount of residue was observed in the case of phosphite. Phosphate was found to be better flame retardant in polyurea, whereas phosphite is suitable for epoxy resin. Phosphite will react with epoxy resin by trans-esterification, which is demonstrated by FTIR and 31P NMR. Further, TG–FTIR and XPS studies also provide information on flame retardancy of both polymers with phosphorus flame retardants.  相似文献   

14.
合成了一种9,10-二氢-9-氧杂-10-磷杂菲-10-氧化物(DOPO)的衍生物——聚苯氧基磷酸-2-10-氢-9-氧杂-磷杂菲基对苯二酚酯(POPP), 以间苯二胺(m-PDA)为固化剂, 环氧树脂(EP)为基料, POPP为阻燃剂, 复配聚磷酸铵(APP), 制备了不同磷含量的阻燃环氧树脂. 利用极限氧指数(LOI)和垂直燃烧(UL94)实验表征了环氧树脂的阻燃性能; 以热重分析、 锥型量热和扫描电镜分析了阻燃环氧树脂的热性能和表面形态. 研究结果表明, 阻燃剂总加入量(质量分数)为5%时即可达到UL94 V-0级, 同时LOI值为27.7%; 当总加入量为15%, 即wPOPP=5%, wAPP=10 %时, 其LOI值可达到33.8%. 随着磷含量的增加, 阻燃环氧树脂的初始降解温度略有降低, 但高温下的残炭率明显增加. POPP/APP的加入在很大程度上降低了环氧树脂的热释放速率、 有效燃烧热、 烟释放量和有毒气体释放量. 阻燃环氧树脂在高温下形成比较稳定的致密膨胀炭层, 为底层的环氧树脂主体隔绝了分解产物及热量和氧气交换, 增强了高温下的热稳定性.  相似文献   

15.
A reactive phosphorus-containing compound, bis-phenoxy (3-hydroxy) phenyl phosphine oxide (BPHPPO) was first successfully synthesized to produce the phosphorus-containing flame retardant epoxy resin (BPHPPO-EP). The chemical structures were characterized from FTIR, MS, NMR spectra and elemental analyses. Thermal degradation behaviors and flame retardant properties of the cured epoxy resins were investigated from the thermogravimetric analysis (TGA) and the limiting oxygen index (LOI) test using 4,4′-diaminodiphenylsulfone (DDS) as curing agent. The high char yields and the high limiting oxygen index values were found to certify the great flame retardancy of this phosphorus-containing epoxy resin.  相似文献   

16.
A phosphorus-nitrogen containing flame retardant additive of poly(phosphoric acid piperazine),defined as PPAP,was synthesized by the salt-forming reaction between anhydrous piperazine and phosphoric acid,and the dehydration polymerization under heating in nitrogen atmosphere.Its chemical structure was well characterized by Fourier transform infrared (FTIR) spectroscopy,13C and 31p solid-state nuclear magnetic resonance measurements.The synthesized PPAP and curing agent m-phenylenediamine were blended into epoxy resin (EP) to prepare flame retardant EP thermosets.The effects of PPAP on the fire retardancy and thermal degradation behavior of cured EP/PPAP composites were investigated by limiting oxygen index (LOI),vertical burning (UL-94),thermogravimetric analysis/infrared spectrometry (TG-IR) and cone calorimeter tests.The morphologies and chemical compositions of char residues for cured epoxy resin were investigated by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS),respectively.The results demonstrated that the flame retardant EP thermosets successfully passed UL-94 V-0 flammability rating and the LOI value was as high as 30.8% when incorporating 5wt% PPAP into the EP thermosets.The TGA results indicated that the synthesized PPAP flame retardant additive possessed high thermal stability and excellent charring capability.Meanwhile,the incorporation of PPAP stimulated the epoxy resin matrix to decompose and charring ahead of time due to its catalytic decomposition effect,which led to a higher char yield at high temperature.The morphological structures and the analysis results of XPS for char residues of EP thermosets revealed that the introduction of PPAP benefited the formation of a sufficient,more compact and homogeneous char layer containing phosphorus-nitrogen flame retardant elements on the material surface during combustion.The formed char layer with high quality effectively prevented the heat transmission and diffusion,limited the production of combustible gases,and inhibited the emission of smoke,leading to the reduction of heat and smoke release.  相似文献   

17.
The thermal decomposition of various mixtures of acrylonitrile butadiene styrene copolymer (ABS), ABS containing brominated epoxy resin flame retardant and Sb2O3, poly(ethylene terephthalate) (PET) and poly(vinyl chloride) (PVC) has been studied in order to clarify the reactions between the components of mixed polymers. More than 40 halogen-containing molecules have been identified among the pyrolysis products of mixed samples. Brominated and chlorinated aromatic esters were detected from the mixtures containing PET and halogen-containing polymers. A series of chlorinated, brominated and mixed chlorinated and brominated phenols and bisphenol A molecules have been identified among the pyrolysis products of polymer mixtures containing flame retarded ABS and PVC. It was established that the decomposition rate curves (DTG) of the mixtures were not simple superpositions of the individual components indicating interactions between the decomposition reactions of the polymer components. The maximal rate of thermal decomposition of both ABS and PET decreases significantly if the mixture contains brominated epoxy flame retardant and Sb2O3 synergist. The dehydrochlorination rate of PVC is enhanced in the presence of ABS or PET.  相似文献   

18.
Boron‐containing novolac resins were synthesized by the modification of a commercial novolac resin with different contents of bis(benzo‐1,3,2‐dioxaborolanyl)oxide. These novolac resins were crosslinked with diglycidyl ether of bisphenol A (DGEBA), and their thermal, thermodynamomechanical, and flame‐retardant properties were evaluated. The boron‐containing novolac resins were less thermally stable than the unmodified novolac resin. Their modification degree and DGEBA content were related to the crosslinking density of the materials. The boron‐containing novolac resins generated boric acid at high temperatures and gave an intumescent char that slowed down the degradation and prevented it from being total. They also showed good flame‐retardant properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 1701–1710, 2006  相似文献   

19.

A novel phosphorous containing flame retardant epoxy resin is synthesized by modifying the epoxy resin initially with phosphoric acid and further with aluminum hydroxide (ATH) to enhance the fire retardancy of the modified epoxy resin. The several phosphorous modified epoxy resin to ATH mass ratios were used to study the effect of ATH addition on epoxy. Thermal and mechanical properties. The structure of the modified flame retardant epoxy resin was characterized using Fourier-transform infrared spectroscopy (FTIR) while thermal degradation behavior and flame retardant properties were examined using thermo-gravimetric analysis (TGA) and UL-94 testing. Furthermore, ultimate tensile strength and young modulus were analyzed to study the effect of ATH addition on mechanical properties. The findings indicated that fire retardancy of ATH reinforced modified ep oxy resin is higher than virgin and phosphorous modified epoxy resin and depicted eminent flame retardant properties with suitable mechanical properties.

  相似文献   

20.
The flame retardant effect of newly synthesized phosphorus-containing reactive amine, which can be used both as crosslinking agent in epoxy resins and as a flame retardant, was investigated. The effect of montmorillonite and sepiolite additives on the fire induced degradation was compared to pristine epoxy resin. The effect of combining the organophosphorous amine with clay minerals was also studied. It could be concluded that the synthesized phosphorus-containing amine, TEDAP can substitute the traditional epoxy resin curing agents providing additionally excellent flame retardancy: the epoxy resins flame retarded this way reach 960 °C GWFI value, 33 LOI value and V-0 UL-94 rating - compared to the 550 °C GWFI value, 21 LOI value and “no rate” UL-94 classification of the reference epoxy resin. The peak of heat release was reduced to 1/10 compared to non-flame retarded resin, furthermore a shift in time was observed, which increases the time to escape in case of fire. The flame retardant performance can be further improved by incorporating clay additives: the LOI and the HRR results showed that the optimum of flame retardant effect of clay additives is around 1 mass% filler level in AH-16-TEDAP system. Applying a complex method for mechanical and structural characterization of the intumescent char it was determined that the flame retarded system forms significantly more and stronger char of better uniformity with smaller average bubble size. Incorporation of clay additives (owing to their bubble nucleating activity) results in further decrease in average bubble diameter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号