首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The influence of silica fillers on chemical modifications of diglycidyl ether of bisphenol A/triethylene tetramine (DGEBA/TETA) epoxy resins induced by electron beam irradiation has been studied by 13C CP-MAS (Cross Polarisation and Magic Angle Spinning) NMR. Four kinds of silica filler were investigated: a pure micrometric silica, a treated micrometric silica, a pure nanometric silica and a treated nanometric silica. On the unirradiated epoxy resins, the magnetization transfer curves reveal structural differences due to the kind of silica fillers. A decrease of the epoxy network rigidity in the presence of nanometric silica fillers is shown. During irradiation, the formation of phenolic ends and enamine functions is confirmed. The slowing of the magnetization transfer of the pure and treated micrometric silica filled epoxy resin reveals an important decrease of the rigidity of these resins. On the pure and treated nanometric silica filled epoxy resins, reactions of the reactive species created by the irradiation in the epoxy resin and the silica particles surface are shown.  相似文献   

2.
On the basis of measurements of linear thermal expansion of hardened epoxy resins the influence of some modifiers on the thermal expansion of epoxy resin Epidian-5 has been examined. The glass transition temperatures of examined samples were determined.The paper presents also results of the examinations of changes in thermal and cure shrinkage for epoxy resins that occur under the influence of such modifiers as plasticizers and fillers.Five different compositions were examined. A simple and fast measuring method was applied, in which sample elongations vs temperature were determined with a cathetometer. Specific volume changes of liquid resins with temperature were measured with a quartz dilatometer and a cathetometer.  相似文献   

3.
应用不同化学结构、分子量及其分布的环氧树脂进行了电子束辐射固化实验 ,对固化物进行了动态力学分析 ,研究了不同样品凝胶含量、内耗tanδ及动态模量的变化规律 .分析结果表明环氧树脂辐射反应活性与其化学结构有很大关系 ,酚醛型环氧树脂的辐射反应活性高 ,固化后高温模量及玻璃化温度较高 ,而脂环族环氧树脂反应活性小 .在低辐射剂量下 ,环氧树脂的固化度随分子量增大略有下降 ,但固化物的玻璃化温度随分子量增加而升高 .增大辐射剂量 ,树脂固化度的提高受分子量大小的影响很小 ,分子量较大样品的网络均匀程度有所提高 ,在较高反应程度下 ,玻璃化温度主要受固化度影响 .树脂固化程度也是决定其模量高低的主要因素 ,而在固化程度相近的情况下 ,分子量的影响作用很大 .在同样辐射剂量下 ,分子量分布宽的树脂固化反应程度高 ,但交联网络均匀性低 .  相似文献   

4.
Elaborated methods of synthesis of chemically modified silicas with grafted silicon hydride and amino groups are analyzed. Experimental results on use of modified silicas with bonded amino groups as fillers of carboxyl-containing rubbers and epoxy resins are reported. It was shown that modified silica fillers with grafted silicon hydride groups could be applied for carrying out processes of catalytic solid-phase hydrosilylation of 2-hydroxyethylmethacrylate and some other functional olefins.  相似文献   

5.
In the present paper, the dynamic mechanical properties of random-in-plane short fiber-reinforced epoxy resin composites were studied by using a rheometrics solids analyzer. The three-point bend testing of the four composites (glass fiber/913 epoxy resin, glass fiber/924 epoxy resin, carbon fiber/913 epoxy resin and carbon fiber/924 epoxy resin) was carried out over temperatures from −100°C to 200°C at a frequency of 10 Hz and strain 0.05%. The composites based on 924 epoxy resin, which has been designed specially for high temperature applications, have less energy loss than the 913 epoxy resinbased composites. For the same resin, the carbon fiber-reinforced composites have less energy loss than the glass fiber-reinforced composites. All the composites have less energy loss than their corresponding matrices; the greater the fiber content, the lower the energy loss. The beta transition of 913 epoxy resin has been shifted to a higher temperature after being reinforced. It was shifted from −50°C to −30°C after being reinforced with glass fiber and made a diffuse shoulder-like peak commencing at −30°C after being reinforced with carbon fiber. The 924 epoxy resin has undergone the same change in beta transition as the 913 resin, though to a smaller extent. The phenomenon suggested that interactions between the macromolecules of the epoxy resins and the molecules along the fiber's surface.  相似文献   

6.
Modification of epoxy resin using reactive liquid (ATBN) rubber   总被引:5,自引:0,他引:5  
Epoxy resins are widely utilised as high performance thermosetting resins for many industrial applications but unfortunately some are characterised by a relatively low toughness. In this respect, many efforts have been made to improve the toughness of cured epoxy resins by the introduction of rigid particles, reactive rubbers, interpenetrating polymer networks and engineering thermoplastics within the matrix.In the present work liquid amine-terminated butadiene acrylonitrile (ATBN) copolymers containing 16% acrylonitrile is added at different contents to improve the toughness of diglycidyl ether of bisphenol A epoxy resin using polyaminoimidazoline as a curing agent. The chemical reactions suspected to take place during the modification of the epoxy resin were monitored and evidenced using a Fourier transform infrared. The glass transition temperature (Tg) was measured using a differential scanning calorimeter. The mechanical behaviour of the modified epoxy resin was evaluated in terms of Izod impact strength (IS), critical stress intensity factor, and tensile properties at different modifier contents. A scanning electron microscope (SEM) was used to elucidate the mechanisms of deformation and toughening in addition to other morphological features. Finally, the adhesive properties of the modified epoxy resin were measured in terms of tensile shear strength (TSS).When modifying epoxy resin with liquid rubber (ATBN), all reactivity characteristics (gel time and temperature, cure time and exotherm peak) decreased. The infrared analysis evidenced the occurrence of a chemical reaction between the two components. Addition of ATBN led to a decrease in either the glass transition temperature and stress at break accompanied with an increase in elongation at break and the appearance of some yielding. As expected, the tensile modulus decreased slightly from 1.85 to about 1.34 GPa with increasing ATBN content; whereas a 3-fold increase in Izod IS was obtained by just adding 12.5 phr ATBN compared to the unfilled resin. It is obvious that upon addition of ATBN, the Izod IS increased drastically from 0.85 to 2.86 kJ/m2 and from 4.19 to 14.26 kJ/m2 for notched and unnotched specimens respectively while KIC varies from 0.91 to 1.49 MPa m1/2 (1.5-fold increase). Concerning the adhesive properties, the TSS increased from 9.14 to 15.96 MPa just by adding 5 phr ATBN. Finally SEM analysis results suggest rubber particles cavitation and localised plastic shear yielding induced by the presence of the dispersed rubber particles within the epoxy matrix as the prevailing toughening mechanism.  相似文献   

7.
Dynamic mechanical spectroscopy and differential scanning calorimetry were used to study the effect of various fillers (carbon fiber, glass fiber, and aramid fiber) on the kinetic characteristics of glass transition in polymer composite materials based on epoxy resin. It is shown that the composite based on carbon fiber is the most fragile among the materials studied, whereas the polymer composite material based on aramid fiber exhibits the lowest rate of variation of the relaxation time above the glass-transition temperature. A relationship is determined between the heat conductivity and fragility of polymer composite materials. The effect of various fillers on the curing kinetics of the epoxy matrix upon glass transition is prognosticated, with the difference in the degree of curing reaching a value of 4–5%. The strongest filler effect on the curing kinetics is observed in the chemically controlled region, which may be due to the catalytic effect of functional groups on the fiber surface.  相似文献   

8.
Samples of the cured resins were prepared in the form of cast sheets. The concentration of the amine curing agent (triethylenetetramine) in the epoxy resin (bisphenol-A diglycidylether) was varied between 25 and 100% of the stoichiometric quantity. The cured resins were examined by differential scanning calorimetry, penetration under load as a function of temperature, and dynamic mechanical analysis. It is found that all of these methods provide a useful means of monitoring crosslinking through changes in the glass transition temperature. The dependence of some characteristic secondary relaxation temperatures, and the change in heat capacity at the glass transition, on the concentration of the amine were also investigated.  相似文献   

9.
Ultrasonics measurements were performed during the cure of epoxy resins. The results show some different comportments if there is only the gelation process which passes through the frequency window of the study or if there is also a vitrification phenomenon. The last case occurs with a high glass transition temperature epoxy resin like DGEBA-DDS. with which the increasing glass transition temperature of the resin is rapidly higher than the study temperature. The former case happens for low Tg epoxy resin like BDGE-HMDA. But in any case the method is very sensitive to the mechanical properties evolution of the material.  相似文献   

10.
To improve the surface and mechanical interfacial properties of epoxy resins, fluorine-containing epoxy resin (FEP) was prepared and blended with a commercially available tetrafunctional epoxy resin (TGDDM). As a result, when the fluorine content increased, the total surface energy of TGDDM/FEP blends was gradually decreased, while the water repellency of the blends was increased. The glass transition temperature and thermal stability factors of the blends showed maximum values at 20-40 wt% FEP compared with neat TGDDM epoxy resins. And the mechanical interfacial properties of the blend specimens were significantly increased with increasing the FEP content, which could be attributed to the intermacromolecular interactions in the cured TGDDM/FEP blends. These results indicate that the water repellency and toughness improvements have been achieved without significantly deterioration of the thermal properties in the TGDDM/FEP blends.  相似文献   

11.
Hardening of a low molecular epoxy resin with p,p′-phenol-phthalein-bis(trimellitic) dianhydride has been studied by using differential scanning calorimetry. The relationships of glass transition temperature of the systems being examined versus time, temperature of hardening, and dianhydride content in the compositions have been determined. The activation energy of crosslinking reactions in systems containing 50% of the stoichiometric amount of dianhydride has been evaluated. The value of activation energy obtained indicates a high reactivity of dianhydride in the examined reactions. The hardened epoxy composition exhibits excellent thermal stability, good hardness, and good resistance to acid solutions.

During research on soluble, regularly alternating polyesterimides, a synthesis of p,p′-phenolphthalein-bis(trimellitic) dianhydride was carried out and thus a new compound obtained [1]. The presence in the molecule of this new compound of four functional groups capable of reacting with epoxy groups and good solubility in organic solvents and low molecular epoxy resins suggested the use of this compound as a hardening agent for liquid resins. Examinations of the hardening process were conducted by using a low molecular epoxy resin (Beckopox 37–140) which is equivalent to Epidiane 5 and Epikotc 828.  相似文献   

12.
Octa(aminophenyl)silsesquioxane (OAPS) was used as the curing agent of diglycidyl ether of bisphenol-A (DGEBA) epoxy resin. A study on comparison of DGEBA/OAPS with DGEBA/4,4′-diaminodiphenyl sulfone (DDS) epoxy resins was achieved. Differential scanning calorimetry was used to investigate the curing reaction and its kinetics, and the glass transition of DGEBA/OAPS. Thermogravimetric analysis was used to investigate thermal decomposition of the two kinds of epoxy resins. The reactions between amino groups and epoxy groups were investigated using Fourier transform infrared spectroscopy. Scanning electron microscopy was used to observe morphology of the two epoxy resins. The results indicated that OAPS had very good compatibility with DGEBA in molecular level, and could form a transparent DGEBA/OAPS resin. The curing reaction of the DGEBA/OAPS prepolymer could occur under low temperatures compared with DGEBA/DDS. The DGEBA/OAPS resin didn’t exhibit glass transition, but the DGEBA/DDS did, which meant that the large cage structure of OAPS limited the motion of chains between the cross-linking points. Measurements of the contact angle indicated that the DGEBA/OAPS showed larger angles with water than the DGEBA/DDS resin. Thermogravimetric analysis indicated that the incorporation of OAPS into epoxy system resulted in low mass loss rate and high char yield, but its initial decomposition temperature seemed to be lowered.  相似文献   

13.
Biobased epoxy resins were synthesized from a catechin molecule, one of the repetitive units in natural flavonoid biopolymers also named condensed tannins. The reactivity of catechin toward epichlorohydrin to form glycidyl ether derivatives was studied using two model compounds, resorcinol and 4‐methylcatechol, which represent the A and B rings of catechin, respectively. These model molecules clearly showed differences in reactivity upon glycidylation, explaining the results found with catechin monomer. The reaction products were characterized by both FTIR and NMR spectroscopy and chemical assay. The glycidyl ether of catechin (GEC) was successfully cured in various epoxy resin formulations. The GECs thermal properties showed that these new synthesized epoxy resins displayed interesting properties compared to the commercial diglycidyl ether of bisphenol A (DGEBA). For instance, when incorporated up to 50% into the DGEBA resin, GEC did not modify the glass‐transition temperature. Epoxy resins formulated with GEC had slightly lower storage moduli but induced a decrease of the swelling percentage, suggesting that GEC‐enhanced crosslinking in the epoxy resin networks. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

14.
A silicon compound (GAPSO) was synthesized to modify the diglycidyl ether of bisphenol-A (DGEBA). The chemical structure of GAPSO was confirmed using FT-IR, 29Si NMR and GPC. The mechanical and thermal properties and morphologies of the cured epoxy resins were investigated by impact testing, tensile testing, differential scanning calorimetry and environmental scanning electron microscopy. The impact strength and tensile strength were both increased by introducing GAPSO, meanwhile the glass transition temperature (Tg ) was not decreased and the morphologies of the fracture surfaces show that the compatibility of GAPSO with epoxy resin was very good and the toughening follows the pinning and crack tip bifurcation mechanism. The high functional groups in GAPSO can react during the curing process, and chemically participate in the crosslinking network. GAPSO is thus expected to improve the toughness of epoxy resin, meanwhile maintain the glass transition temperature.  相似文献   

15.
环氧树脂水基化化学改性的研究   总被引:13,自引:0,他引:13  
用对氨基苯甲酸改性环氧树脂 ,使其成为具有亲水性的树脂。测定了改性树脂的溶解性 ,发现改性后树脂在有机溶剂中的溶解性能变差 ,但在碱性溶剂中溶解性增强。对改性树脂进行了红外光谱表征 ,并根据环氧基特征峰的吸收对环氧基转化率进行了定量分析。测定了改性产物的DSC曲线 ,发现随着反应物中对氨基苯甲酸比例的提高 ,改性产物的玻璃化转变温度升高。涂膜的性能测试表明 ,对氨基苯甲酸改性环氧树脂水基涂料的机械力学性能和耐化学试剂性能比溶剂型纯环氧树脂要优越。  相似文献   

16.
Phosphorus‐containing epoxy‐based epoxy–silica hybrid materials with a nanostructure were obtained from bis(3‐glycidyloxy)phenylphosphine oxide, diaminodiphenylmethane, and tetraethoxysilane in the presence of the catalyst p‐toluenesulfonic acid via an in situ sol–gel process. The silica formed on a nanometer scale in the epoxy resin was characterized with Fourier transform infrared, NMR, and scanning electron microscopy. The glass‐transition temperatures of the hybrid epoxy resins increased with the silica content. The nanometer‐scale silica showed an enhancement effect of improving the flame‐retardant properties of the epoxy resins. The phosphorus–silica synergistic effect on the limited oxygen index (LOI) enhancement was also observed with a high LOI value of 44.5. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 986–996, 2001  相似文献   

17.
The existence of local order in two epoxy resins of the diglycidyl ether of bisphenol-A (DGEBA) type has been investigated using Rayleigh scattering and Brillouin spectroscopy. The resins differ in their molecular weight distributions and their relative concentrations of epoxide and hydroxyl groups. The complementary use of both techniques in elucidating the thermal behavior of local order is illustrated, and the use of the latter technique to study thermal acoustic phonons and hypersonic relaxation is discussed. Both techniques independently show that molecular aggregates exist in each resin system. The scattering-envelope dissymmetry shows that the resin with the high epoxide/hydroxyl group ratio contains aggregates up to 20 nm in size, and the low-ratio resin exhibits sizes up to 70 nm. These aggregates are thermally unstable in the temperature range studied (293–443 K). Dissolution in chloroform shows that these aggregates are reduced in size and that further structural changes occur which are dependent on solvent concentration. Aggregate volume fractions were determined for a range of aggregate size. Brillouin spectroscopy indicated that both resins exhibit hypersonic relaxation in the temperature range studied. The complex longitudinal moduli of the resins were superimposable under a WLF temperature transformation comparable to the difference in their static glass transition temperatures. Molecular aggregate size, number, and stability are related to the epoxide/hydroxyl ratio of the resins and the degree of intermolecular hydrogen bonding.  相似文献   

18.
Thermoplastic resins have been widely used in fiber reinforced polymer composites because of its recyclability and short cycle times. However, the high viscosity after heating and melting restricts its infiltration on the surface of fiber. In this study, a series of thermoplastic epoxy resins were prepared via the chain extension reaction of epoxy groups with liquid aniline using triphenylphosphine (TPP) as catalyst. The relationship between polymer network structure and performance was comprehensively investigated. The solubility tests indicated that excessive aniline or TPP facilitated the crosslinking of resins. Besides, on the premise of thermoplasticity, appropriate TPP could increase the degree of chain extension, molecular weight, and glass transition temperature of resins. Furthermore, the in-situ polymerization process facilitated infiltration between epoxy resin and the fibers before chain extension reaction. The bending test showed that the flexural performance of the sample with 2 phr of TPP was improved by 38.8%. Therefore, this work provides a feasible method to prepare the thermoplastic epoxy resins and its fiber-reinforced composites with good mechanical properties.  相似文献   

19.
The study of the chemical modifications of model compounds of the diglycidyl ether of bisphenol A/triethylene tetramine (DGEBA/TETA) epoxy resins under electron irradiation is described. The reaction of butylamine and N,N′-diethylethylene diamine with DGEBA afforded model compounds of the DGEBA/TETA structure. Nanometric silica was used as filler for these model compounds. 1H and 13C NMR analyses allowed identification of the chemical structures before and after irradiation. C-O and C-N scissions were observed with the formation of phenolic and methyl-ketone ends and of primary and secondary amines. For the model compounds containing the 1,2-diaminoethylene structure, the scission of the C-N bond is followed by the formation of an enamine end. The mechanisms of the different bond scissions are proposed. The presence of the nanometric silica fillers allows the protection of some C-N bonds. The reaction of the chemical species formed by electron irradiation with the reactive functions at the silica surface is proposed to explain the chemical modifications observed on the irradiated filled model compounds.  相似文献   

20.
A reactive amino-ended toughener was blended with different commercial epoxy resins namely, diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl p-aminophenol and 1,5-naphthalenediamine as curing agent. The toughener was an aromatic amino-ended copolyethersulphone (coPES):poly(ether-sulphone)–poly(etherether-sulphone). The effect of the toughener on the thermal decomposition and char oxidation behaviour of the epoxy resins was studied by the simultaneous differential thermal analysis and thermogravimetric techniques. The glass transition temperature (T g) as well as characteristic parameters of decomposition, initial decomposition temperature (T i) and temperature at maximum degradation rate (T m), in both inert and oxidative environments, were determined in order to verify the influence of toughener on the thermal degradation of the different epoxy systems. It was observed that the presence of coPES maintains the high level thermal stability of the resin and that the glass transition temperature increase with the toughener percentage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号