首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hyperbranched polyphosphate acrylate (HPPA) was blended in different ratios with tri(acryloyloxyethyl) phosphate (TAEP) to obtain a series of UV curable intumescent flame retardant resins. The thermal degradation mechanism of their cured films in air was studied by thermogravimetric analysis and in situ Fourier-transform infrared spectroscopy. The results showed that the addition of HPPA reduced the initial decomposition temperature (Tdi) but increased the char residue. Moreover, the decomposition was considered to be divided into three stages: firstly the degradation of phosphate group, secondly ester group and finally alkyl chain. The morphological structure of the formed char was observed by scanning electron microscopy, demonstrating the formation mechanism of the intumescent charred crust.  相似文献   

2.
Poly(bisphenol A acryloxyethyl phosphate) (BPAAEP) being used for UV curable flame retardant coatings and adhesives, was synthesized from phosphorus oxychloride, hydroxylethyl acrylate and bisphenol A as raw materials, and characterized using 13C NMR, 31P NMR, FTIR, MS and GPC measurements. A series of formulations with different ratios of BPAAEP to urethane acrylate, EB220, were prepared to obtain flame retardant resins. The flame retardancy of the UV cured films was investigated by the limiting oxygen index (LOI). A synergistic effect between phosphorus and nitrogen was observed when 1.5 wt% phosphorus was presented in the resin. Their maximum photopolymerization rates and final unsaturation conversion (Pf) in the cured films at the presence of a 3 wt% photofragmenting initiator were investigated. The results showed that the Pf increased with increasing EB220 content photo-DSC analysis. The data from dynamic mechanical thermal analysis showed that BPAAEP has good miscibility with EB220. Moreover, the crosslink density and Tg of the cured film decreased along with the content of BPAAEP in the blend.  相似文献   

3.
A novel phosphate acrylate monomer (TGMAP) has been synthesized by allowing phosphoric acid to react with glycidyl methacrylate. Its structure was characterized by Fourier transformed infrared spectroscopy (FTIR) and 1H nuclear magnetic resonance spectroscopy (1H NMR). The thermal degradation mechanism was characterized using thermogravimetric analysis/infrared spectrometry (TG-IR). The char yield was 36.3% at 600 °C. TG data indicate that the material undergoes degradation in three characteristic temperature stages, which can be attributed to the decomposition of the phosphate, thermal pyrolysis of aliphatic chains, and degradation of an unstable structure in char, respectively. The volatilized products formed on thermal degradation of TGMAP indicated that the volatilized products are CO, CO2, carboxylic acid, acid anhydride, water, alkane, and aromatic compounds according to the temperature of onset formation.  相似文献   

4.
A reactive amino-ended toughener was blended with different commercial epoxy resins namely, diglycidyl ether of bisphenol A, diglycidyl ether of bisphenol F, diglycidyl p-aminophenol and 1,5-naphthalenediamine as curing agent. The toughener was an aromatic amino-ended copolyethersulphone (coPES):poly(ether-sulphone)–poly(etherether-sulphone). The effect of the toughener on the thermal decomposition and char oxidation behaviour of the epoxy resins was studied by the simultaneous differential thermal analysis and thermogravimetric techniques. The glass transition temperature (T g) as well as characteristic parameters of decomposition, initial decomposition temperature (T i) and temperature at maximum degradation rate (T m), in both inert and oxidative environments, were determined in order to verify the influence of toughener on the thermal degradation of the different epoxy systems. It was observed that the presence of coPES maintains the high level thermal stability of the resin and that the glass transition temperature increase with the toughener percentage.  相似文献   

5.
Poly(?-caprolactone-co-1,2-butylene carbonate) (PBCCL) was successfully synthesized via terpolymerization of carbon dioxide, 1,2-butylene oxide(BO) and ?-caprolactone (CL). A polymer-supported bimetallic complex (PBM) was used as catalyst. The influences of various reaction conditions such as reaction content, reaction time and reaction temperature on properties of terpolymers were investigated. When CL content increased, the viscosity-average molecular weights (Mv), glass transition temperature (Tg) and decomposition temperature (Td) of PBCCL improved relative to those of poly(1,2-butylene carbonate) (PBC). Prolonging the reaction time resulted in increase in Mv and Tg. As reaction temperature increased, the molar fractions of CL (fCL) increased obviously. When the reaction temperature went beyond 80 °C, the resulting copolymers tended to be crystalline. The thermal properties and degradation behaviors of PBCCL were investigated by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The apparent activation energy and thermal degradation model of PBCCL was estimated by means of Ozawa-Flynn-Wall method and Phadnis-Deshpande method, respectively. The results showed that Tg and Td of the terpolymer PBCCL were much higher than those of PBC. The thermal degradation behavior of PBCCL was evidenced by one-step thermal degradation profile. The average apparent activation energy is 77.06 kJ/mol, the thermal degradation kinetics follows the power law thermal decomposition model.  相似文献   

6.
A novel flame-retardant silane containing phosphorus and nitrogen, tetramethyl(3-(triethoxysilyl)propylazanediyl) bis(methylene) diphosphonate (TMSAP), is firstly synthesized and then incorporated into poly(methyl methacrylate) (PMMA) matrix through sol–gel method to produce organic–inorganic hybrids. The chemical structure of TMSAP was confirmed by Fourier transform infrared spectra, 1H nuclear magnetic resonance (NMR) and 31P NMR spectra. The hybrids obtained maintain relatively high transparency, and exhibit a significant improvement in thermal properties, mechanical performance and flame retardancy when compared to pure PMMA, including increased glass transition temperature (T g ) by 11.4 °C, increased onset thermal degradation temperature (T0.1) by 82.6 °C, increased half thermal degradation temperature (T0.5) by 42.0 °C, increased hardness, increased limited oxygen index and decreased heat release rate. Morphological studies of hybrids by scanning electron microscopy (SEM) and 29Si MAS NMR suggest that cross-linked silica network is formed in the hybrids and the inorganic silica particles are distributed well in the polymer matrix. Thermal degradation behaviors investigated by thermogravimetric analysis and char structure analysis studied by SEM and X-ray photoelectron spectroscopy demonstrate the catalytic charring function of TMSAP, and synergistic effect between phosphorus, nitrogen and silicon element. The formation of network structure, homogeneous distribution of silica and the char formation during degradation play key roles in these property enhancements. Detailed mechanisms for these enhancements are proposed.  相似文献   

7.
Thermal behaviors of polymer blends between common-type polybenzoxazine (PBA-a) and polysiloxane-block-polyimide (SPI) were studied using Dynamic Mechanical Analysis (DMA) and Thermogravimetric Analysis (TGA). The polymer blends showed only one glass-transition temperature (Tg) that increased as the content of SPI increased. Synergistic behavior in the char formation of the alloys was clearly observed. The DTG curves showed three stages and two stages of decomposition reaction in neat PBA-a and SPI, respectively. For the blending systems with 25 wt%, 50 wt%, and 75 wt% of SPI, the DTG thermograms of the blends exhibited four stages of thermal decomposition reaction. The apparent activation energies (Ea) of each step were determined using Kissinger method, Flynn-Wall-Ozawa method and Coats-Redfern method. The type of solid state mechanism was determined by Criado method. From the calculation, the solid state thermal degradation mechanism is proposed to be F1 (random nucleation with one nucleus on the individual particle) type for PBA-a, SPI, and their blends.  相似文献   

8.
The thermal and rheological behaviour of seven random Cl-ended aromatic PES/PEES copolymers (Mn ≈ 9500 g mol−1), at various PES/PEES repeating unit ratios, was studied. The glass transition temperatures (Tg), determined by DSC experiments, showed a dependence on copolymer composition significantly different from the ideal linear behaviour expected on the basis of Fox equation. Degradations were carried out in the scanning mode, under flowing nitrogen, in the temperature range 35-650 °C and a single degradation stage was observed for all copolymers. The initial decomposition temperatures (Ti) and the half decomposition temperatures (T1/2) were directly determined by TG curves, while the apparent activation energies of degradation (Ea) were obtained by the Kissinger method. In addition, the complex viscosity (η) of molten copolymers was determined in experimental conditions of linear viscoelasticity. Ti, T1/2, Ea, and η values were depending on copolymer composition, showing a trend similar to that of Tg values. The results obtained were discussed and interpreted.  相似文献   

9.
A silicon-based acrylate (SHEA) was synthesized via the reaction between 2-hydroxylethyl acrylate and dimethyldichlorosilane, and characterized by Fourier transform infrared (FTIR), 1H NMR spectroscopy and 29Si NMR spectroscopy. The SHEA was blended with phosphorus-containing tri(acryloyloxyethyl) phosphate (TAEP) at different ratios to obtain a series of UV-curable flame retarded resins. The final unsaturation conversion of the SHEA films was determined by FTIR. Their combustion behaviors were examined by microscale combustion calorimetry (MCC). The thermal degradations of TAEP/SHEA composites were characterized using thermogravimetric analysis/infrared spectrometry (TG–IR). The MCC results present that the addition of TAEP into SHEA was able to decrease the HRR, HRC, Tmax and THC. Among the TAEP/SHEA resins, Si1 (TAEP:SHEA is 1:1) owns the highest initial decomposition temperature and leaves the most char residue at 800 °C. The change of chemical structure during the thermal degradation process was monitored by real-time FTIR analysis to study the condensed-phase flame retarded mechanism.  相似文献   

10.
Routine DSC and TGA techniques, used to characterise polymer thermal stability, have been further used for assessment of comparative thermal stability of various polymer materials and for prediction of material lifetimes. The following materials were investigated: (1) commercial and experimental polymer materials - results for poly(vinyl chloride) (PVC) and bisphenol A polycarbonate (PC) are presented; (2) a polydimethylsiloxane-polytetrafluoroethylene (SIL-PTFE) coating system; and (3) commercially available linear low density polyethylene (PE-LLD), unmodified and modified chemically and physically. The plot of reciprocal temperature of initial decomposition 1/Tdi vs log heating rate β has been recommended for assessment of comparative thermal stability. The lifetime of polymer materials was calculated from the plots of log time-to-failure, log tf, vs reciprocal temperature 1/T, where tf values were obtained using Tdi from TGA measurements or directly from the oxidation induction time (OIT) data as criteria for initial deterioration of polymer thermal stability. The following sequences of increasing thermal stability were found for investigated materials:
(1)
PVC ? PC;
(2)
SIL < SIL-PTFE 20% < SIL-PTFE 50% ? PTFE;
(3)
(B) PE-LLD, grafted < (A) PE-LLD, unmodified < (C) PE-LLD, filled.
The lifetime of polymer materials predicted from the plots of log tf vs 1/T are in reasonable agreement with experimental data and users' observations, e.g. approximately 1 year for PC and unmodified PE-LLD both at 373 K (100 °C) and for PVC at temperature of outdoor conditions about 298 K (25 °C).  相似文献   

11.
The effect of irradiation on tensile, dynamic mechanical properties, thermal properties and morphology of ENR-50, EVA and ENR-50/EVA blend was investigated. All the samples were irradiated using a 3.0 MeV electron beam (EB) machine with doses ranging from 20 to 100 kGy. Results indicate that the gel fraction of ENR-50, EVA and ENR-50/EVA blend increases with irradiation dose. Concerning tensile properties, it can be seen that EB radiation increases the tensile strength of all the samples, increases the elongation at break of ENR-50 and ENR-50/EVA blend, reduces the elongation at break of EVA, increases M200 (modulus at 200% strain) of ENR-50 and EVA, while decreases M200 of the ENR-50/EVA blend. For dynamic mechanical studies, it was found that EB radiation increases the Tg of all the samples due to the effect of irradiation-induced crosslinking. The compatibility of ENR-50/EVA blend also found to be improving upon irradiation. In the case of thermal properties, it was detected that Tm, Tc and the degree of crystallinity of ENR-50/EVA blend increase with an increase in irradiation dose. This was due to the perfection in the crystal growth occurring upon radiation. Morphology changes play a major role in the changes of the properties of ENR-50/EVA blend. Finally, it can be concluded that ENR-50/EVA blend can be vulcanized by EB radiation.  相似文献   

12.
The results of investigation of the degradation process of polystyrene brominated on the ring via an ionic route have been presented. Using thermogravimetric (TG) and differential thermal analysis (DTA) methods, the course of degradation of polymer samples with different bromine content has been described. Introducing of bromine on the aromatic ring influenced the initial decomposition temperature (IDT) and the temperature corresponding to the maximum of decomposition rate (T m). The samples have been pyrolyzed at 300°C and some pyrolysis products were identified by means of gas chromatography/mass spectrometry. Finally, the possible mechanism of degradation was presented.  相似文献   

13.
Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) has attracted the attention of academia and industry because of its biodegradability, biocompatibility, thermoplasticity and plastic-like properties. However, PHBV is unstable above 160 °C during melt processing at a temperature above the melting temperature, which restricts practical applications as a commodity material. It is widely believed that thermal degradation of PHBV occurs almost exclusively via a random chain scission mechanism involving a six-membered ring transition state. Here, 2,2′-bis(2-oxazoline) (BOX) was selected to modify PHBV to control the formation of six-membered ring ester during thermal degradation. The resulting hydroxyl-terminated PHBVs (HT-PHBVs) had improved thermal stability due to a decrease in the negative inductive effect of the neighboring group of methylene groups at the β-position to the ester oxygen, and a decrease in the electron-denoting effect of substituent group of carbon atoms at α-position to the ester oxygen. The optimal reaction temperature and time were determined to be 95 °C and 6 h, respectively. Compared with those of original PHBV, the temperature determined at 5% weight loss (T5%), the initial decomposition temperature (T0), the maximum decomposition temperature (Tmax), the complete decomposition temperature (Tf) of HT-PHBV prepared under the optimal conditions increased by 31, 24, 19 and 19.1 °C, respectively.  相似文献   

14.
A novel epoxy-terminated hyperbranched polyphosphate (E-HBPP) was synthesized by employing an A2 + B3 polycondensation and characterized by FTIR, 1H NMR and GPC. E-HBPP was used as a reactive-type flame retardant for diglycidyl ether of bisphenol-A/m-phenylene diamine (DGEBA/mPDA) system. A series of flame retardant resins were prepared and their flame retardancy was monitored by the limiting oxygen index (LOI). The results showed that the LOI value of the cured samples and the degree of expansion of the formed char after burning increased along with the E-HBPP content. Their thermal degradation behaviors were investigated by thermogravimetric analysis and in situ FTIR and showed that the phosphate group of E-HBPP first degraded to form poly(phosphoric acid)s at around 300 °C, which had a major contribution to form the compact char to protect the sample from further degradation. The dynamic mechanical thermal properties were studied by dynamic mechanical thermal analysis (DMTA) and the results showed a good miscibility between E-HBPP and DGEBA. The mechanical properties of the cured films were also investigated. Less than 20% E-HBPP addition improved both the tensile strength and elongation at break.  相似文献   

15.
The thermal decomposition behavior of composite modified double-base propellant containing hexanitrohexaazaisowurtzitane (CL-20/CMDB propellant) was studied by microcalorimetry. The kinetic and thermodynamic parameters were obtained from the analysis of the heat flow curves. The effect of different proportion of CL-20 to the thermal decomposition behavior, kinetics, and thermal hazard was investigated at the same time. The critical temperature of thermal explosion (T b), the self acceleration decomposition temperature (T SADT), and the adiabatic decomposition temperature rise (??T ad) were calculated to evaluate the thermal hazard of the CL-20/CMDB propellant. It shows that the CMDB propellant with 38% CL-20 has relative lower values of E and lgA, and with 18% CL-20 has the highest potential hazard.  相似文献   

16.
The thermal and rheological characterizations of seven random, low molecular weight (Mn ≅ 9500 g mol−1), H2N-ended polyethersulfone/polyetherethersulfone (PES/PEES) copolymers, at various PES/PEES ratios, were performed. The glass transition temperatures (Tg) were determined by DSC. Degradations were carried out in a thermobalance, under flowing nitrogen, in dynamic heating conditions from 35 °C to 650 °C. The initial decomposition temperatures (Ti) and the half decomposition temperatures (T1/2) were directly determined by TG curves, while the apparent activation energies of degradation (Ea) were obtained by the Kissinger method. In addition, the complex viscosities (η) of the molten polymers were determined in experimental conditions of linear viscoelasticity. Tg, Ea and η values increased linearly with PES% content, while Ti and T1/2 values showed opposite behaviour. In every case both PES and PEES homopolymers felt outside linearity. The results obtained are discussed and interpreted, and compared with those of corresponding Cl-ended copolymers previously studied.  相似文献   

17.
Novel microcapsules (MCs) with organic/inorganic hybrid shell were successfully fabricated using epoxy resin as core material and nano boron nitride (BN) and mesoporous silica (SBA‐15) as inorganic shell materials in aqueous solution containing a water‐compatible epoxy resin curing agent. The morphologies, thermal properties and Young's moduli of MCs were investigated. The results indicated that epoxy resins were encapsulated by BN/SBA‐15/epoxy polymer hybrid layer, the resulting MCs were spherical in shape and the introduction of inorganic particles made MCs had rough surface morphology. The mean modulus value of MCs was from 2.8 to 3.1 GPa. The initial decomposition temperature (Tdi) of MCs at 5 wt% weight loss was from 309 to 312°C. MCs showed excellent thermal stability below 260°C. The structures and properties of MCs could be tailored by controlling the weight ratio of inorganic particle. When the weight ratio of BN to SBA‐15 was 0.15:0.10, MCs had the highest Tdi and modulus. The resulting MCs were applied to high performance 4,4′‐bismaleimidodiphenylmethane/O,O′‐diallylbisphenol A (BMI/DBA) system to design high performance BMI/DBA/MC systems. Appropriate content of MCs could improve the fracture toughness and maintain the glass transition temperature (Tg) of BMI/DBA system. The core materials released from fractured MCs could bond the fracture surfaces of the BMI/DBA matrix through the polymerization of epoxy resins. When the healing temperature schedule of 100°C/2h+150°C/1h was applied, 15 wt% MCs recovered 98% of the virgin fracture toughness of BMI/DBA. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

18.
A carbonization agent, 3,9‐di (2‐hydroxyisopropyl)‐2,4,8,10‐tetraoxa‐3,9‐diphosphaspiro‐[5,5]‐undecane (SPEPO), was synthesized from pentaerythritol (PER), phosphorus trichloride, formic acid, and acetone as raw materials. The structure of SPEPO was characterized by FTIR and 1H‐NMR. As a carbonization agent and an acid source, SPEPO can form a novel intumescent flame‐retardant (IFR) system for low density polyethylene (LDPE) together with ammonium polyphosphate (APP) and melamine phosphate (MP). The flame retardancy and thermal behavior of the IFR system for LDPE were investigated by limiting oxygen index (LOI), UL‐94 test, and thermogravimetric analysis (TGA). When the weight ratio of SPEPO, APP, and MP is 7:7:1 and their total loading level is 30%, the IFR‐LDPE presents the optimal flame retardancy (LOI value of 27.6 and UL‐94 V‐0 rating). However, SPEPO, APP, or MP can only show a very poor flame‐retardant performance when used alone. This indicates that there is a synergistic effect among SPEPO, APP, and MP. TGA results obtained in air demonstrate that SPEPO has an ability of char formation itself, and the char residue of SPEPO can reach 24 wt% at 700°C. The IFR can change the thermal degradation behavior of LDPE, enhance Tmax of the decomposition peak of LDPE, and promote LDPE to form char based on the calculated and the experimental data of residues. According to the results of Py‐GC/MS in combination with FTIR of the char residues at different temperatures, a possible flame‐retardant mechanism has been proposed. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

19.
Initial decomposition temperature (Ti), apparent activation energy of degradation (Ea) and glass transition temperature (Tg) of some low molar mass (Mn ≈ 8000 g mol−1) sulfonated poly(arylene ethersulfone)s s-(PAES)s were determined to check their dependence on sulfonation degree (SD). The results obtained were compared with those for unsulfonated poly(arylene ethersulfone) PAES. In order to have an accurate control of the chemical structure, a pre-sulfonation route was followed for the preparation of sulfonated compounds. The thermal behaviour of the investigated s-(PAES)s as well as that of PAES appears not to be influenced by the environment (flowing nitrogen or static air atmosphere) of degradation. Both Ti and Tg values of s-(PAES)s were higher than those of PAES and increased quite linearly as a function of sulfonation degree. An analogous linear trend was observed for the apparent degradation energy of s-(PAES)s, but the values found were largely lower than those of unsulfonated homopolymer. The results are discussed and interpreted.  相似文献   

20.
Polyaniline (PAni) was prepared by electrochemical polymerization and subjected to different doses of electron beam (EB) irradiation. The effect of EB irradiation causes both chain scission and cross-linking process in PAni, which depends on irradiation dose. The degree of chain scission and cross-linking in PAni by EB irradiation is characterized through XRD, TGA, DSC, solubility, EPR and electrical properties measurement. The results reveal that with increase in EB irradiation dose from 0 to 150 kGy DC and AC conductivity and dielectric constant are found to increase mainly due to the chain scission or further doping in PAni. Due to irradiation there is change in the structure of PAni, such as decrease in the d-spacing, inter-chain separation, thermal stability and Tg but increase in the percent crystallinity and solubility. With further increase in the EB irradiation dose from 150 kGy onwards the DC and AC conductivity and dielectric constant are decreased due to the cross-link formation or dedoping in PAni, which causes the decrease in percentage of crystallinity and solubility and increase in d-spacing, inter-chain separation, thermal stability and Tg of PAni.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号