首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 49 毫秒
1.
In this work, new investigations on the effect of comonomer sequential structure on the thermal and crystallization behaviors and biodegradability have been implemented for the biodegradable poly(butylene succinate‐co‐butylene terephthalate) (PBST) as well as aliphatic poly(butylene succinate) (PBS). At first, these copolyesters were efficiently synthesized from dimethyl succinate and/or dimethyl terephthalate and 1,4‐butanediol via condensation polymerization in bulk. Subsequently, their molecular weights and macromolecular chain structures were analyzed by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. By means of differential scanning calorimeter (DSC) and wide‐angle X‐ray diffractometer (WAXD), thermal and crystallization behaviors of these synthesized aromatic–aliphatic copolyesters were further explored. It was demonstrated that the synthesized copolyesters were revealed to have random comonomer sequential structures with thermal and crystallization properties strongly depending on their comonomer molar compositions, and that crystal lattice structures of the new crystallizable copolyesters shifted from the monoclinic crystal of semicrystalline PBS to triclinic lattice of the poly(butylene terephthalate) (PBT) with increasing the terephthalate comonomer composition, and the minor comonomer components were suggested to be trapped in the crystallizable component domains as defects. In addition, the enzymatic degradability was also characterized for the copolyesters film samples. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1635–1644, 2006  相似文献   

2.
In this work, the enzymatic degradation of poly(butylene succinate-co-butylene terephthalate) (PBST) copolyesters was studied using the lipase from Pseudomonas (Lipase PS®). The biodegradation behavior was found to strongly depend on the overall impacts of several important factors as the BT comonomer structure and molar content, thermal characteristics, morphology, the enzyme-substrate, and so forth. Further, the biodegraded residual film samples were allowed to be analyzed by means of gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H NMR), differential scanning calorimeter (DSC), small angle X-ray scattering (SAXS), and scanning electron microscope (SEM). On the experimental evidences, an exo-type mechanism of enzymatic chain hydrolysis preferentially occurring in the amorphous region was suggested for the PBST film samples.  相似文献   

3.
A series of biodegradable aliphatic/aromatic copolyesters, poly(butylene terephthalate)-co-poly(butylene cyclohexanedicarboxylate)-b-poly(ethylene glycol) (PTCG), were prepared by a two-step melt polycondensation method and characterized by means of GPC, FTIR, NMR, DSC, TGA, etc. The effects of aliphatic ester content on the physical, mechanical and thermal properties, as well as in vitro and in vivo degradation behaviors were investigated. The decrease in mechanical strength was observed with an increase in poly(butylene cyclohexanedicarboxylate) (PBC) molar fraction. DSC results showed one melting point and two glass transition temperatures in all samples, and the melting temperature was found to go down gradually as more cyclohexanedicarboxylic acid (CHDA) was added. During the in vitro and in vivo degradation processes, erosion of the surface was dominant as evidenced by scanning electron microscopic observations. The copolyesters containing many CHDA units were featured by the higher water uptake and faster degradation due to much richer amorphous phase within them.  相似文献   

4.
制备了高分子量的聚丁二酸丁二醇酯,并通过与对苯二甲酸二甲酯的无规共聚调节其生物可降解性及力学性能,得到了具有优良机械性能和不同生物降解速度的一系列共聚物,并对共聚物序列结构、热力学性能、结晶性进行了研究.结果表明,该共聚物为无规共聚物,PBS和PBT分别结晶.共聚物的结晶熔点符合无规共聚物的Flory方程.  相似文献   

5.
Comprehensive mathematical model based on the kinetics and thermodynamic equations is developed to examine a coesterification concept of biodegradable aliphatic‐aromatic copolyesters, poly(butylene succinate‐co‐butylene terephthalate) (PBST). The simulation results for batch process are validated with pilot experimental data. The continuous process is further studied to figure out the coesterification performance of succinic acid (SA) and terephthalic acid (TPA) with different reaction activities and thermodynamic properties in terms of reaction efficiency, small molecular evaporation and product quality. There is a compromise between the operating conditions of the two systems of SA/1,4‐butanediol (BDO) and TPA/BDO. Proper pressure reduction is beneficial to reaction efficiency and product quality. The way to increase reaction efficiency by raising temperature is limited due to the serious evaporation of reactants. Influenced by the solid–liquid equilibrium and the slow reaction rate of TPA, the esterification of acid needs sufficient residence time to complete.  相似文献   

6.
The kinetics of the thermal degradation and thermal oxidative degradation of poly(p-dioxanone) (PPDO) were investigated by thermogravimetric analysis. Kissinger method, Friedman method, Flynn-Wall-Ozawa method and Coats-Redfern method have been used to determine the activation energies of PPDO degradation. The results showed that the thermal stability of PPDO in pure nitrogen is higher than that in air atmosphere. The analyses of the solid-state processes mechanism of PPDO by Coats-Redfern method and Criado et al. method showed: the thermal degradation process of PPDO goes to a mechanism involving random nucleation with one nucleus on the individual particle (F1 mechanism); otherwise, the thermal oxidative degradation process of PPDO is corresponding to a nucleation and growth mechanism (A2 mechanism).  相似文献   

7.
New special engineering thermoplastics, poly(phthalazinone ether sulfone) (PPES) and poly(phthalazinone ether sulfone ketone) (PPESK), containing phthalazinone are synthesized through step-polymerization. The kinetics of thermal degradation of PPES and PPESK (1/1) in nitrogen is investigated at several heating rates by thermogravimetry (TG). It is concluded that, based on using Satava’s theory, the thermal degradation mechanism of PPESK (1/1) is nucleation and growth, the order of reaction of the degradation process is one (n = 1). In contrast, the thermal degradation mechanism of PPES is a phase boundary controlled reaction and the order of the reaction is two (n = 2). The kinetic parameters, including reaction energy and frequency factor of thermal degradation reaction for PPES and PPESK (1/1) are analyzed using isoconversional Friedman, Kissinger–Akahira–Sunose (K–A–S) and Ozawa method. In addition, the study focus on the influence of heating rate and ratio of ketone/sulfone on thermal stability and the life estimation are described.  相似文献   

8.
The multiple melting behavior of biodegradable poly(butylene succinate-co-terephthalate) (PBST) copolyester with 70 mol% aromatic units isothermally crystallized at various temperatures was investigated by wide angle X-ray diffraction, differential scanning calorimetry (DSC) and modulated DSC (MDSC). PBST copolyester exhibited at most three melting peaks in the DSC heating traces and the dual lamellar population model was utilized for interpreting the origin of the multiple melting behavior. Multiple melting peaks were observed even at high heating rates and the co-existence of the melting-recrystallization-remelting model was suggested. The MDSC results gave the direct evidences to the conclusion that the combination of the two models mentioned above was able to explain the multiple melting behavior of PBST copolyester properly.  相似文献   

9.
A series of aliphatic biodegradable polyesters modified with fumaric residues was synthesized by transesterification in the melt of dimethyl succinate, dimethyl fumarate and 1,4-butanediol. The amount of unsaturation, originating from the fumaric acid residues in the polyesters chains was varied from 5 to 20 mol%. The molecular structure and composition of the polyesters were determined by 1H NMR spectroscopy. The effects of the content of fumaric residues on the thermal and thermo-oxidative properties of the synthesized polyesters were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis. The degree of crystallinity was determined by DSC and wide angle X-ray scattering. The degrees of crystallinity of the unsaturated copolyesters were reduced, while the melting temperatures were higher in comparison to poly(butylene succinate). Biodegradation of the synthesized copolyesters was estimated in enzymatic degradation tests using a buffer solution with Rhizopus arrhizus lipase at 37 °C. Although the degree of crystallinity of the copolyesters decreases slightly with increasing unsaturation, the biodegradation is not enhanced suggesting that not only the chemical structure and molecular stiffness but also the morphology of the spherulites has an influence on the biodegradation properties. The highest biodegradability was observed for the copolyesters containing 5 and 10 mol% of fumarate units.  相似文献   

10.
In this paper, a series of f(α) kinetic equations able to describe the random scission degradation of polymers is formulated in such a way that the reaction rate of the thermal degradation of polymers that go through a random scission mechanism can be directly related to the reacted fraction. The proposed equations are validated by a study of the thermal degradation of poly(butylene terephthalate) (PBT). The combined kinetic analysis of thermal degradation curves of this polymer obtained under different thermal pathways have shown that the proposed equation fits all these curves while other conventional models used in literature do not.  相似文献   

11.
Random copolyesters of dimethyl terephthalate (DMT), ethylene glycol (EG), and butane-1,4-diol (BD) and the homopolyesters poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) have been subjected to degradation and pyrolysis studies. Differential thermal analysis (DTA) showed that the decomposition temperature is dependent on the percentage of EG and BD present in the copolyesters. Thermal volatilization analysis (TVA) also showed that the decomposition temperature is dependent on the percentage of EG and BD present in the copolyesters. The trend for the decomposition temperatures obtained from TVA studies for these copolyesters is similar to such other thermal properties as melting temperature Tm, ΔHf, ΔHc, etc. The subambient thermal volatilization analysis (SATVA) curves obtained for these polymers are also presented. The SATVA curve is the fingerprint of the total volatile products formed during the degradation in high vacuum. The isothermal pyrolysis of these materials was carried out in high vacuum at 450°C. The products formed were separated in a gas chromatograph and were subsequently identified in a mass spectrometer. The major pyrolysis products from PBT were butadiene and tetrahydrofuran, whereas those from PET were ethylene and acetaldehyde. The ratio of acetaldehyde to ethylene increases with the EG content in the copolyester, suggesting a different decomposition mechanism compared to the decomposition mechanism of PBT and PET.  相似文献   

12.
Poly(butylene succinate‐ran‐butylene azelate) random copolyesters were thermally fractionated by successive self‐nucleation and annealing (SSA). The samples before and after SSA were analyzed by differential scanning calorimetry (DSC) and X‐ray diffraction (WAXS and SAXS). WAXS results indicate that a small degree of comonomer inclusion is present in the crystalline phases that are formed in the copolymers depending on composition: a PBS‐like unit cell or/and a PBAz‐like unit cell, thus confirming the isodimorphic behavior of the samples. SSA on the other hand demonstrated that the degree of comonomer exclusion during crystallization is far larger than comonomer inclusion, as judged by the increase in fractionation degree with compositions leading to the pseudo‐eutectic point. Furthermore, WAXS, SAXS, and SSA results show that the isodimorphic behavior is not highly dependent on kinetic factors, as the degree of comonomer inclusion or exclusion in the samples was not significantly altered by SSA thermal fractionation, a thermal treatment that promotes annealing and molecular segregation of defects to the amorphous regions of the material. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 2346–2358  相似文献   

13.
以琥珀酸、富马酸、丁二醇为原料,用共缩聚的方法合成了一系列高分子量聚 (琥珀酸丁二醇酯-共-富马酸丁二醇酯)。然后在催化剂四氧化锇和N-甲基吗啉- N-氧化物以及水存在下,使高分子主链中富马酸丁二醇酯共聚单元的碳碳不饱和双 键发生羟基化反应得到含有亲水性侧羟基的功能性聚酯。对上述合成的生物降解性 高分子运用核磁共振(NMR)、红外(FT-IR)、热分析等方法进行了结构与物理性 能表征。  相似文献   

14.
A series of aliphatic biodegradable poly(butylene succinate-co-dl-lactide) (PBSLA) copolyesters were synthesized with the aim of improving the degradation rate of poly(butylene succinate) (PBS) by incorporation of dl-oligo(lactic acid) (OLA) into the PBS molecular chains. The composition and sequential structure of the aliphatic copolyesters were investigated by proton nuclear magnetic resonance (1H NMR) spectroscopy. The crystallization behaviors, the crystal structure and morphology of the copolyesters were investigated by using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarizing optical microscopy (POM), respectively. The results indicate that the crystallization of the copolyesters was restricted by the incorporation of lactide (LA) units, which further tuned the mechanical properties of the copolyesters. The copolyesters could form complete spherulites and exhibit the same crystal structure as that of PBS. Enzymatic study indicated that the copolyesters with higher content of LA units degraded faster, and the degradation began in the amorphous regions and then in the crystalline regions. The morphology and the resulting degradation products of the copolyesters were investigated by scanning electron microscopy (SEM) and 1H NMR analysis during the degradation process.  相似文献   

15.
To obtain a biodegradable polymer material with satisfactory thermal properties, higher elongation and modulus of elasticity, a new copolyester, poly(hexylene terephthalate-co-lactide) (PHTL), was synthesized via direct polycondensation from terephthaloyl dichloride, 1,6-hexanediol and oligo(lactic acid). The resulting copolyesters were characterized by proton nuclear magnetic resonance (1H NMR), differential scanning calorimetry (DSC), thermogravimetry (TG) and wide-angle X-ray scattering (WAXS). By using the relative integral areas of the dyad peaks in 1H NMR spectrum of copolyesters PHTL, the sequence lengths of the hexylene terephthalate and lactide units in the resultant copolyesters are 3.5 and 1.5, respectively. Compared to poly(hexylene terephthalate) (PHT), PHTL has lower T m but higher T g due to the incorporation of lactide unit into the main chains of copolyesters. The degradation test of copolyesters under a physiological condition shows that the degradability of PHTL is sped up due to incorporation of lactide segments.  相似文献   

16.
Cyclic oligomer fractions of ethylene terephthalate c(ET)n and 1,4‐cyclohexylenedimethylene terephthalate c(CT)n were obtained by cyclodepolymerization of their respective polyesters, the former containing around 80 mol % of trimer and the latter with around 70 mol % of trimer to pentamer. Mixtures of these fractions at selected compositions were subjected to ring opening copolymerization to give a series of poly(ethylene‐co‐cyclohexylenedimethylene terephthalate) copolyesters with ET/CT comonomer ratios ranging from 90/10 to 10/90. The copolyesters were characterized by GPC and NMR, and their thermal properties were evaluated by DSC and TGA. They had essentially the same composition as the feed from which they were produced and had an average‐weight molecular weights between 30,000 and 40,000 g/mol with polydispersities between 2 and 2.7. The distribution of the monomeric units in these copolyesters was essentially at random although it evolved to be a blocky microstructure as the contents in the two comonomers became more dissimilar. Their thermal behavior was the expected one for these types of copolyesters with crystallinity and heating stability decreasing with the content in CT units. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5954–5966, 2009  相似文献   

17.
To increase the thermal and mechanical properties of the aliphatic polyester poly(butylene succinate) (PBS), a series of potentially biodegradable liquid crystalline aromatic/aliphatic random copolyesters were prepared by melt polycondensation of new mesogenic monomers dimethyl 4,4′-(terephthaloyldioxy) dibenzoate (MTB), dimethyl succinate, and 1,4-butanediol. The synthesized copolyesters were characterized by means of proton nuclear magnetic resonance spectroscopy (1H NMR), gel permeation chromatography (GPC), viscosity measurements, differential scanning calorimetry (DSC), thermogravimetry (TG), X-ray diffraction (XRD), polarizing light microscopy (PLM) and mechanical property measurements. The MTB content was varied so that the effects of the mesogen content on the thermal and mechanical properties, degradable behaviours and mesophase were examined. It was found that introducing the rigid rod mesogens could increase the thermal stability and the mechanical properties, while it reduced the melting temperature (Tm), the crystallization temperature (Tc), the degree of relative crystallinity (Xc) and the hydrolytic degradation rate. Only the homopolyester poly(butylenes terephthaloyldioxy dibenzoates) was able to show the schlieren texture characteristic of nematics.  相似文献   

18.
The block copolyesters of poly(butylene terephthalate)(PBT) and poly(butylene adipate)(PBA) were prepared by a novel two-stage method. In the first stage, high molecular weight PBT and PBA were melt mixed in the presence of 1,4-butanediol at 275 °C. In the second stage, vacuum was applied to raise the molecular weight. The extent of transesterification was controlled by the proportion of 1,4-butanediol. The sequence distribution and the thermal properties of the block copolyesters were characterized by NMR and DSC respectively.  相似文献   

19.
Poly(hexamethylene terephthalate) was cyclo-depolymerized in solution by heating to yield a fraction of cyclic oligomers of hexamethylene terephthalate (c(HT)2-5) with a content around to 95% in dimer to pentamer. Ring-opening polymerization in the melt of c(HT)2-5, either neat or in mixtures with ε-caprolactone (CL) covering a range of HT/CL ratios from 9/1 to 1/9 was carried out to produce polyesters with molecular weights above 30,000 in high yields. The copolyesters had a comonomer composition according to the feed and the microstructure evolved from random to blocky as the content in CL increases. The thermal and mechanical properties of the copolyesters were evaluated for a variety of compositions. Results obtained in this work were compared to those previously obtained by us in the ring-opening copolymerization of CL with a cyclic oligomeric fraction enriched in hexamer and heptamer (c(HT)6-7). Although the polyesters resulting from the use of these two fractions were similar, significant differences were found in polymerization rate evidencing a lower reactivity of c(HT)n with decreasing values of n.  相似文献   

20.
Enhanced nonisothermal crystallization of a series of poly(butylene succinate‐co‐terephthalate) (PBST) by poly(vinyl butyral) (PVB) as a macromolecular nucleating agent has been examined systematically with various techniques and theoretical modeling. The role of PVB depends strongly on the butylene terephthalate content, PVB content, and cooling rate. The (0.3–0.7 wt %) PVB reduces the spherulitic size, but considerably increases the peak temperature of crystallization, for example, by 28 °C for the PBST with 50 mol % terephthalic acid. The effects of PVB are believed to stem from its unique molecular structure. Both the hydroxyl and butyral groups of PVB may synergistically participate in nucleating PBSTs for crystallization because of favorable secondary interaction and affinity of butyral groups with butylene succinate units of PBSTs. Only the Tobin model suffices to describe the nonisothermal crystallization kinetics, while the modified Avrami model is suitable for limited crystallinity. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 658–672  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号