首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 118 毫秒
1.
An investigation on the time-dependent chemical degradation of ethylene-propylene diene rubber containing 5-ethylidene-2-norbornene as diene cured by peroxide crosslinking in the presence of a coagent in an acidic environment (20% Cr/H2SO4) has been made. Two types of rubber, with comparable monomer composition, but having significant differences in molar mass and levels of long chain branching were tested. Dicumyl peroxide and triallylcyanurate under similar conditions were used for curing the rubbers. The molecular mechanisms of chemical degradation at the surface were studied using X-ray photoelectron spectroscopy and attenuated total reflectance Fourier transform infrared spectroscopy, which demonstrate that several oxygenated species evolve during exposure. The primary process of degradation is hydrolytic attack on the crosslink sites, which is manifested by a decrease in crosslink density. The surface degradation is found to be strong enough to alter the bulk mechanical properties as observed by the change in retention in tensile strength, elongation at break, modulus at 50% elongation and, the change in micro-hardness. Retention in modulus at 50% elongation is found to follow a negative linear correlation with decrease in crosslink density. With higher molar mass and level of long chain branching more crosslinking occurs and thus comparatively more hydrolytic attack ensues. Scanning electron microscopy shows that the surface topography is significantly altered upon exposure and supports the notion of the dependence of degradation on the crosslinking density of the samples. Importantly, the coagent used in this study is shown to enhance the chemical degradation through formation of weaker sites for hydrolysis. The results also show that upon prolonged exposure the resulting oxygenated species tend to combine with each other.  相似文献   

2.
This paper describes a novel test method for monitoring chemical degradation of a crosslinked rubber by stress relaxation under tension. An accelerated sulphur cured ethylene propylene diene rubber (EPDM) was subjected to stress relaxation under tension while exposing to 50% aqueous solution of nitric acid (HNO3). An experimental set up was designed and built in-house for this purpose. The tensile test specimen was stretched to a constant elongation. The stress decay was monitored upon exposure to the harsh chemical. Stress decay was found much faster in the exposure media than in air. Decrosslinking was the main reason for quicker stress decay as observed by decrease in crosslink density. To compare, experiments were conducted by exposing similar specimens in the same exposure media under unstressed conditions. It was found that monitoring chemical degradation under given stressed condition yielded relatively quicker yet reliable and reproducible results.  相似文献   

3.
This article is devoted to the study of electron‐beam‐induced degradation under argon atmosphere of an ethylene–propylene–diene monomer (EPDM, based on 5‐ethylidene 2‐norbornene) and an ethylene–propylene rubber (EPR) containing the same molar ratio of ethylene/propylene. The chemical structure modifications of polymeric samples were analyzed by ultraviolet–visible and IR spectroscopies. Crosslinking reactions were deduced by measuring the changes in gel fraction and the degree of swelling in n‐heptane. Irradiation of EPDM and EPR created trans‐vinylene, vinyl, vinylidene, and dienic‐type unsaturations. The radiochemical yields for unsaturation formations in EPDM and EPR were similar. Degradation also involved crosslinking and the production of molecular hydrogen. The comparison between EPDM and EPR showed that the diene (in which a double bond is consumed with a high radiochemical yield) contributes to the increase in rate and intermolecular bridges density. Mechanisms are proposed to account for the main routes of EPDM degradation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 1239–1248, 2004  相似文献   

4.
Methacrylic acid (MAA) was used as in situ surface modifier to improve the interface interaction between nano‐CaCO3 particle and ethylene–propylene–diene monomer (EPDM) matrix, and hence the mechanical properties of nano‐CaCO3‐filled EPDM vulcanizates. The results showed that the incorporation of MAA improved the filler–matrix interaction, which was proved by Fourier transformation infrared spectrometer (FTIR), Kraus equation, crosslink density determination, and scanning electron microscope (SEM). The formation of carboxylate and the participation of MAA in the crosslinking of EPDM indicated the strong filler–matrix interaction from the aspect of chemical reaction. The results of Kraus equation showed that the presence of MAA enhanced the reinforcement extent of nano‐CaCO3 on EPDM vulcanizates. Crosslink density determination proved the formation of the ionic crosslinks in EPDM vulcanizates with the existence of MAA. The filler particles on tensile fracture were embedded in the matrix and could not be observed obviously, indicating that a strong interfacial interaction between the filler and the matrix had been achieved with the incorporation of MAA. Meanwhile, the presence of MAA remarkably increased the modulus and tensile strength of the vulcanizates, without negative effect on the high elongation at break. Furthermore, the ionic bond was thought to be formed only on filler surface because of the absolute deficiency of MAA, which resulted in the possible structure where filler particles were considered as crosslink points. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1226–1236, 2006  相似文献   

5.
The effect of oil and curing agent content on the mechanical behavior of thermoplastic vulcanizates, based on a polypropylene (PP) and ethylene‐propylene‐diene copolymer (EPDM), was investigated. Mechanical properties such as Young's modulus, stress at 100% elongation and ultimate stress were investigated as a function of blends' composition and phase morphology. Experimental studies show that the Young's modulus of the vulcanizates depends on both PP/EPDM ratio and oil content in the blends; both ultimate strength and stress at 100% elongation increase with curing agent content.  相似文献   

6.
Blends of ethylene propylene diene terpolymer rubber (EPDM) with high density polyethylene were obtained by melt mixing. Mechanical properties of the composites, tensile strength, hardness, resilience, elongation at break, 100% modulus and tear strength were determined. Differential scanning calorimetry and wide angle x-ray diffraction were employed to study melting behavior and crystalline structure. The surface properties were analyzed using contact angle determinations. Also, compatibilization with PE-g-MA or dynamical vulcanization using phenolic resins was applied to obtain improved mechanical properties. It was found that the crystalline structure of HDPE was not changed during blending. The vulcanized composite presents a lower degree of crystallinity. Elongation at break and hardness were significantly increased for composites containing compatibilizing agent. The morphology of EPDM composites was studied by atomic force microscopy.  相似文献   

7.
The sorption of C2 and C3 hydrocarbons in two ethylene–propylene copolymers and a propylene homopolymer and the simultaneous dilation of the polymers were measured at temperatures of 287–363 K and pressures up to 4 MPa. The sorption isotherms were well described by the Flory–Huggins theory of dissolution. Dilation isotherms in the form of elongation versus pressure were similar in shape to the corresponding sorption isotherms. Solubility coefficients, partial molar volumes, and Flory–Huggins interaction parameters were determined from these isotherms. The thermal expansivities of the hydrocarbons dissolved in the polymers were 0.002–0.005 K?1, and the Flory–Huggins interaction parameters depended not only on temperature but also on concentration. At 323 K, the calculated solubilities of propylene in the ethylene–propylene‐rubber regions of the copolymers were 1.8 times higher than in the amorphous regions of the propylene homopolymer. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1255–1262, 2001  相似文献   

8.
Varying compositions of styrene–butadiene rubber (SBR) and ethylene–propylene diene monomer (EPDM) 50:50 blend containing multiple walled carbon nanotube (MWNT) as nanoparticulate filler (0.5–5%) were prepared and their efficacy for radiation vulcanization was analyzed by gel‐content, Charlesby‐Pinner parameter, and crosslinking density measurements. Radiation sensitivity of the nanocomposites increased with increase in the MWNT fraction and radiation dose in the dose range studied. The elastic modulus, tensile strength increased with the radiation dose, while elongation at break exhibited downward trend. The extent of reinforcement as assessed using Kraus equation suggested high reinforcement of blend on MWNT addition. The reinforcing mechanism of nanocomposites was studied by various micromechanics models which predicted higher modulus than the experimentally observed results, indicating agglomeration in the nanocomposites. The thermal stability of the composites increased with increase in MWNT loading has been attributed to the antioxidancy induced by nanotubes and higher crosslinking extent of the nanocomposites. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

9.
In this study the effect of electron beam irradiation on rheological properties of a poly (propylene‐co‐ethylene) heterophasic copolymer is evaluated. Using dynamic viscoelastic measurement in the linear viscoelastic range of deformation, it is observed that the complex viscosity and dynamic modulus of polypropylenes were decreased by increasing the irradiation dose. Polypropylene heterophasic copolymers consist of ethylene propylene rubber phase dispersed in polypropylene homopolymer matrix. The high energy electron beams simultaneously affect both isotactic polypropylene (iPP) matrix and ethylene propylene dispersed phase. The molecular chains of polypropylene homopolymer phase breakdown to smaller species, those are prone to degradation and branching as well. Increase in the melt flow rate behavior and shifting the cross‐over point to higher frequencies and increase in melt strength are due to this phenomenon. At the same time, the ethylene propylene phase of the polypropylene copolymer cross‐links due to irradiation, and a significant effect on the rheological behavior of samples are observed. The mathematical modeling of complex viscosity behavior revealed the conformity of experimental data with modified Carreau equation. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

10.
The chemical degradation of an uncrosslinked pure fluoroelastomer (FKM; Viton A) in an alkaline environment (10% NaOH and 80 °C) was investigated. Scanning electron microscopy images showed that on a microscopic level, significant degradation substantially increased the surface roughness after prolonged exposure (e.g., 12 weeks). The molecular mechanisms of the chemical degradation processes at the surface were evaluated with X‐ray photoelectron spectroscopy and attenuated total reflectance/Fourier transform infrared spectroscopy. The results revealed that the early degradation proceeded primarily via dehydrofluorination reactions, creating double bonds in the rubber backbone. This further accelerated the degradation after longer exposure times. Furthermore, the resulting double bonds underwent nucleophilic attack by an aqueous NaOH solution to form several oxygenated species. All these species ultimately recombined to form crosslinks, as evidenced by the increase in the gel fraction and surface hardness (Shore A). The pronounced effect of chemical degradation through a reduction in the thermal stability of the pure FKM rubber upon exposure was also evident from thermogravimetric analysis and differential thermogravimetry. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 6216–6229, 2004  相似文献   

11.
Ethylene‐propylene‐diene terpolymers (EPDM) are generally amorphous and, therefore, do not crystallize from solution. Consequently, fractionation techniques based on crystallization, such as crystallization analysis fractionation or temperature rising elution fractionation, cannot be used to analyze their chemical composition distribution. Moreover, no suitable chromatographic system was known, which would enable to separate them according to their chemical composition. In this study, two different sorbent/solvent systems are tested with regard to the capability to separate EPDM‐terpolymers and ethylene‐propylene (EP)‐copolymers according to chemical composition. While porous graphite/1‐decanol system is selective towards ethylene and ethylidene‐2‐norbornene, carbon coated zirconia/2‐ethyl‐1‐hexanol is preferentially selective towards ethylene. Consequently, the earlier system enables to separate both EP copolymers and EPDM according to the chemical composition and the latter mainly according to the ethylene content. The results prove that the chromatographic separation in both sorbent/solvent systems is not influenced by molar mass of a sample or by its long chain branching. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

12.
A thermoplastic elastomer (TPE) of ethylene propylene diene terpolymer (EPDM) and nylon with excellent mechanical properties was prepared by dynamic vulcanization. The effects of the curing systems, compatibilizer, nylon content and reprocessing on the mechanical properties of EPDM/nylon TPEs were investigated in detail. Experimental results indicate that maleic anhydride (MAH) grafted EPR has a better performance in compatibilizing the EPDM/nylon blends compared with other compatibilizers containing acid group. Tensile strength and elongation at break go through a maximum value at a compatibilizer resin content (on total rubber dosage) of 20%. EPDM/nylon TPE using sulfur as curative has higher tensile strength and elongation than that of TPE using phenolic resin or peroxide as curatives. Tensile strength and elongation at break increase with increasing nylon content. Scanning electron microscopy results show that rubber particles distributed at an average size of 1 μm in dynamic vulcanized EPDM/MAH-g-EPR/nylon TPE.  相似文献   

13.
The mobilities of polymer chain segments in mixtures of rubber and carbon black were investigated by nuclear magnetic resonance. Spin–spin relaxation time (T2) measurements on cis-polybutadiene and ethylene–propylene–diene rubber (EPDM) bound rubbers detected at least two relaxing regions: an immobile region and a relatively free region. The molecular motions in the relatively free region are still constrained compared to those of the pure gum.  相似文献   

14.
Nylon copolymer (PA6, 66) and ethylene propylene diene (EPDM) blends with and without compatibilizer were prepared by melt mixing using Brabender Plasticorder. The thermal stability of nylon copolymer (PA6, 66)/ethylene propylene diene rubber (EPDM) blends was studied using thermogravimetric analysis (TGA). The morphology of the blends was investigated using scanning electron microscopy (SEM). In this work, the effects of blend ratio and compatibilisation on thermal stability and crystallinity were investigated. The incorporation of EPDM rubber was found to improve the thermal stability of nylon copolymer. The kinetic parameters of the degradation process were also studied. A good correlation was observed between the thermal properties and phase morphology of the blends. By applying Coats and Redfern method, the activation energies of various blends were derived from the Thermogravimetric curves. The compatibilization of the blends using EPM-g-MA has increased the degradation temperature and decreased the weight loss. EPM-g-MA is an effective compatibilizer as it increases the decomposition temperature and thermal stability of the blends. Crystallinity of various systems has been studied using wide angle X-ray scattering (WAXS). The addition of EPDM decreases the crystallinity of the blend systems.  相似文献   

15.
Crosslink network evolution of brominated butyl rubber (BIIR)/ethylene–propylene–diene-monomer rubber (EPDM) blends during peroxide vulcanization is studied at a meso-scale level. In this work, EPDM is added as a co-agent to increase the crosslink density of BIIR vulcanization. With increasing EPDM content from 0 to 20 phr, the maximum torque of BIIR/EPDM compounds during vulcanization increases by 73%, reaching to 3.40 dNm. Vulcanization kinetic study shows that addition of EPDM favors to the crosslinking of BIIR compound. Meanwhile, the addition of 20 phr EPDM contributes to an increase in the crosslink density of BIIR/EPDM(80/20) vulcanizate, avoiding downward trend at post-cure period in comparison with BIIR only. Crosslink network evolution of BIIR/EPDM blends is divided into three periods during peroxide vulcanization at 150 °C. The role of EPDM in the crosslink network evolution is studied by proton nuclear magnetic resonance, and a “network patching” mechanism is proposed in which EPDM is implied to work as patch on damaged crosslink network resulted from the degradation nature of BIIR.  相似文献   

16.
Chemical and electron beam irradiation methods were used to introduce a branched structure into polypropylene and propylene–ethylene copolymer. The chemical method was carried out in an internal mixer using initiator and TMPTMA monomer. In irradiation method, the polymer was irradiated by electron beam under air and nitrogen atmosphere. The branched structure in the modified polymer was confirmed by rheological measurements. While degradation was significant in chemical method, branching occurred efficiently by irradiation under air. Small amount of ethylene in the propylene copolymer promoted branching over degradation.  相似文献   

17.
The preceding papers of this series were devoted to the identification and quantification of the main chemical changes resulting from the radiochemical ageing of EPDM (77.9% ethylene, 21.4% propylene, 0.7% diene) and EPR (76.6% ethylene, 23.4% propylene) films irradiated under oxygen atmosphere using 60Co γ-rays. It was shown that two processes are involved in the EPDM radio-oxidation. The random γ-radiolysis of the polymer provides a constant source of macro-alkyl radicals that are likely to initiate a selective oxidation of the polymer through free-radicals reactions involving the abstraction of labile hydrogen atoms. In the present paper, infrared spectroscopy has been used to study the γ-degradation of EPDM cross-linked with dicumyl peroxide and/or stabilised with two types of anti-oxidants (hindered phenol or amine-type). The results show that the anti-oxidants are not efficient in preventing oxidation. To understand the lack of efficiency of the stabilisers, the impacts of the various formulations on the rate of degradation of EPDM against chain oxidation involved in thermal and UV ageing were also studied.  相似文献   

18.
Ultra high molecular weight polyethylene (UHMW-PE) fibers were used in a chopped form and at different concentrations as a reinforcing material in ethylene–propylene–diene terpolymers (EPDM). The effect of radiation dose and fiber concentration on the mechanical properties of the vulcanized rubber composites obtained was measured. It was found that γ-irradiation improves the interfacial adhesion between UHMW-PE fiber (Spectra 1000) and EPDM matrix which was detected by scanning electron microscopy (SEM). In addition, the Young modulus of the composites increases as the irradiation dose increases. Increasing the concentration of the fibers up to 40 phr leads to an enhancement in mechanical properties and swelling resistance of obtained composites, especially in the absence of carbon black. The absolute value of the modulus increased by a factor of at least two with the addition of carbon black. Moreover the tear strength of reinforced and filled EPDM was improved with respect to reinforced rubber. © 1997 John Wiley & Sons, Ltd.  相似文献   

19.
Rubber compounds based on styrene-butadiene rubber/ethylene propylene diene monomer blends of different compositions (60/40, 70/30, 80/20, 90/10, 100/0) reinforced with 1 wt%, 3 wt%, 5 wt% and 7 wt% organoclay (Cloisite 20A) were prepared on a two roll mill via a vulcanization process and characterized by several techniques. Results of X-ray diffraction showed expansion of the inter-gallery distance, and transmission electron microscopy (TEM) micrographs confirmed that the prepared nanocomposite samples have intercalated and partially exfoliated structures. Cure characteristics showed that, organoclay not only accelerates the vulcanization reaction, but also gives rise to a marked increase of the torque, indicating crosslink density of the prepared compounds increases at the presence of organoclay. Mechanical properties of samples received markedly increase by clay loading due to the good interaction established between nanoclay particles and polymer matrix as it was evidenced by SEM photomicrographs. At the same time, rheological properties showed that addition of nanoclay could improve storage modulus as well as complex viscosity of SBR/EPDM samples. The results of ozone test revealed that the ozone resistance of samples significantly increases as nanoclay or EPDM content increases.  相似文献   

20.
Biocompatibilizer-based refined, bleached, deodorized palm stearin was successfully used as compatibilizer for natural rubber/recycled ethylene–propylene–diene rubber (NR/R-EPDM) blends. It seems effective in improving the state of cure, tensile properties, as well as the swelling resistance and morphology of the blends, indicating an improvement in compatibility between the NR matrix and R-EPDM rendered by biocompatibilizer. This was clearly verified by the dynamic mechanical properties of the blends. The dynamic responses obtained were clearly corresponding to the swelling result. It proves that the cross-link density plays a major role in the changes of storage modulus and degree of entanglement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号