首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Poly(ethylene succinate) (PES), poly(trimethylene succinate) (PTS) and their copolyesters with various compositions were synthesized through a direct polycondensation reaction with titanium tetraisopropoxide as the catalyst. The results of intrinsic viscosity and GPC have proven successful in preparing high molecular weight polyesters. The compositions and the sequence distributions of the copolyesters were determined by analyses of 1H NMR and 13C NMR spectra. The sequence distributions of ethylene succinate units and trimethylene succinate (TS) units were found to be random. Their thermal properties were characterized using differential scanning calorimeter and thermal gravimetric analyzer. All of the copolymers exhibit a single glass transition temperature (Tg). There is no significant difference in the thermal stability among these polyesters. Wide angle X-ray diffractograms (WAXD) were obtained for polyesters which can be crystallized isothermally. The results of thermal analysis and the WAXD patterns indicate that the incorporation of TS units into PES significantly inhibits the crystallization behavior of PES. Additionally, the crystal pattern of PTS is quite different from that of PES. Dynamic mechanical properties of moldable polyesters were investigated using a Rheometer operated at 1 Hz. Below Tg, the incorporation of TS units into PES results in the decline of storage modulus. Above Tg, the effect of crystallinity on the storage modulus can be found.  相似文献   

2.
Biodegradable aliphatic poly (butylene succinate-co-butylene itaconate) (PBSBIs) from succinic acid, itaconic acid and 1,4-butanediol were synthesized through a polycondensation with titanium tetraisoproxide (TTP), diphenylphosphinic acid (DPPA) as the novel co-catalysts in this article. By means of gel permeation chromatography (GPC) and nuclear magnetic resonance spectrometer (NMR), it was revealed that the PBSI copolyesters had number average molecular weights Mn higher than 3.0 × 104, and the composition of copolyesters was in good agreement with that expected from the feed composition of the reactants. With respect to thermal properties, melting temperature (Tm), crystallization temperature (Tc), and crystallinity (Xc) were found to decrease with increasing the BI/BS unit molar ratio up to 0.67. X-ray diffraction patterns indicated that the PBSIs copolyesters had the same crystal structure as the PBS. While increasing the BI/BS unit molar ratio up to 1, the copolyesters would change into insolubility and inmelt crosslinked elastomer. Otherwise, the observation of polarizing optical microscope (POM) showed that the spherulite size of copolyesters gradually became smaller with the increasing of BI unit content. Experimental results also showed that the contents of itaconic acid had an important effect on the biodegradable performance of copolyesters.  相似文献   

3.
In this work, new investigations on the effect of comonomer sequential structure on the thermal and crystallization behaviors and biodegradability have been implemented for the biodegradable poly(butylene succinate‐co‐butylene terephthalate) (PBST) as well as aliphatic poly(butylene succinate) (PBS). At first, these copolyesters were efficiently synthesized from dimethyl succinate and/or dimethyl terephthalate and 1,4‐butanediol via condensation polymerization in bulk. Subsequently, their molecular weights and macromolecular chain structures were analyzed by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. By means of differential scanning calorimeter (DSC) and wide‐angle X‐ray diffractometer (WAXD), thermal and crystallization behaviors of these synthesized aromatic–aliphatic copolyesters were further explored. It was demonstrated that the synthesized copolyesters were revealed to have random comonomer sequential structures with thermal and crystallization properties strongly depending on their comonomer molar compositions, and that crystal lattice structures of the new crystallizable copolyesters shifted from the monoclinic crystal of semicrystalline PBS to triclinic lattice of the poly(butylene terephthalate) (PBT) with increasing the terephthalate comonomer composition, and the minor comonomer components were suggested to be trapped in the crystallizable component domains as defects. In addition, the enzymatic degradability was also characterized for the copolyesters film samples. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1635–1644, 2006  相似文献   

4.
A series of aliphatic biodegradable polyesters modified with fumaric residues was synthesized by transesterification in the melt of dimethyl succinate, dimethyl fumarate and 1,4-butanediol. The amount of unsaturation, originating from the fumaric acid residues in the polyesters chains was varied from 5 to 20 mol%. The molecular structure and composition of the polyesters were determined by 1H NMR spectroscopy. The effects of the content of fumaric residues on the thermal and thermo-oxidative properties of the synthesized polyesters were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis. The degree of crystallinity was determined by DSC and wide angle X-ray scattering. The degrees of crystallinity of the unsaturated copolyesters were reduced, while the melting temperatures were higher in comparison to poly(butylene succinate). Biodegradation of the synthesized copolyesters was estimated in enzymatic degradation tests using a buffer solution with Rhizopus arrhizus lipase at 37 °C. Although the degree of crystallinity of the copolyesters decreases slightly with increasing unsaturation, the biodegradation is not enhanced suggesting that not only the chemical structure and molecular stiffness but also the morphology of the spherulites has an influence on the biodegradation properties. The highest biodegradability was observed for the copolyesters containing 5 and 10 mol% of fumarate units.  相似文献   

5.
The thermal properties of caprolactam/long chain lactam copolymer were studied with a Perkin-Elmer DSC 7. The melting point (T m), heat of fusion (δH m), crystalline degree (X c), crystallization temperature (T c) and glass transition temperature (T g) of the copolymers increase with decrease of the content of the log chain lactam. From the changes in the mechanical properties with corresponding changes in the thermal properties, it is clear that the copolymers are thermal plastic and elastic. In addition, it is found that the results at a heating rate of 10 deg·min?1 are almost the same as that at 20 deg·min?1 after thermal history is erased.  相似文献   

6.
制备了高分子量的聚丁二酸丁二醇酯,并通过与对苯二甲酸二甲酯的无规共聚调节其生物可降解性及力学性能,得到了具有优良机械性能和不同生物降解速度的一系列共聚物,并对共聚物序列结构、热力学性能、结晶性进行了研究.结果表明,该共聚物为无规共聚物,PBS和PBT分别结晶.共聚物的结晶熔点符合无规共聚物的Flory方程.  相似文献   

7.
A series of aliphatic biodegradable poly(butylene succinate-co-dl-lactide) (PBSLA) copolyesters were synthesized with the aim of improving the degradation rate of poly(butylene succinate) (PBS) by incorporation of dl-oligo(lactic acid) (OLA) into the PBS molecular chains. The composition and sequential structure of the aliphatic copolyesters were investigated by proton nuclear magnetic resonance (1H NMR) spectroscopy. The crystallization behaviors, the crystal structure and morphology of the copolyesters were investigated by using differential scanning calorimetry (DSC), wide angle X-ray diffraction (WAXD) and polarizing optical microscopy (POM), respectively. The results indicate that the crystallization of the copolyesters was restricted by the incorporation of lactide (LA) units, which further tuned the mechanical properties of the copolyesters. The copolyesters could form complete spherulites and exhibit the same crystal structure as that of PBS. Enzymatic study indicated that the copolyesters with higher content of LA units degraded faster, and the degradation began in the amorphous regions and then in the crystalline regions. The morphology and the resulting degradation products of the copolyesters were investigated by scanning electron microscopy (SEM) and 1H NMR analysis during the degradation process.  相似文献   

8.
A series of multiblock poly(ether-ester)s based on poly(butylene succinate) (PBS) as the hard segments and hydrophilic poly(ethylene oxide) (PEO) as the soft segments was synthesized with the aim of developing degradable polymers which could combine the mechanical properties of high performance elastomers with those of flexible plastics. The aliphatic poly(ether-ester)s were synthesized by the catalyzed two-step transesterification reaction of dimethyl succinate, 1,4-butanediol and α,ω-hydroxyl terminated poly(ethylene oxide) (PEO, = 1000 g/mol) in bulk. The content of soft PEO segments in the polymer chains was varied from about 10 to 50 mass%. The effect of the introduction of the soft PEO segments on the structure, thermal and physical properties, as well as on the biodegradation properties was investigated. The composition and structure of these aliphatic segmented copolyesters were determined by 1H NMR spectroscopy. The molecular weights of the polyesters were verified by gel permeation chromatography (GPC), as well as by viscometry of dilute solutions and polymer melts. The thermal properties were investigated using differential scanning calorimetry (DSC). The degree of crystallinity was determined by means of DSC and wide-angle X-ray scattering. A depression of melting temperature and a reduction of crystallinity of the hard segments with increasing content of PEO segments were observed. Biodegradation of the synthesized copolyesters, estimated in enzymatic degradation tests in phosphate buffer solution with Candida rugosa lipase at 37 °C was compared with hydrolytic degradation in the buffer solution. The weight losses of the samples were in the range from 2 to 10 mass%. GPC analysis confirmed that there were significant changes in molecular weight of copolyesters with higher content of PEO segments, up to 40% of initial values. This leads to conclusion that degradation mechanism of the poly(ether-ester)s based on PEO segments occurs through bulk degradation in addition to surface erosion.  相似文献   

9.
Melt polycondensation was used to prepare a systematic series of random and amorphous copolyesters using the following cycloaliphatic diesters: dimethyl‐1,4‐cyclohexane dicarboxylate (DMCD), dimethyl bicyclo[2.2.1]heptane‐1,4‐dicarboxylate (DMCD‐1), dimethyl bicyclo[2.2.2]octane‐1,4‐dicarboxylate (DMCD‐2), dimethyl bicyclo[3.2.2]nonane‐1,5‐dicarboxylate (DMCD‐3), 1,4‐dimethoxycarbonyl‐1,4‐dimethylcyclohexane (DMCD‐M) and the aliphatic diols: ethylene glycol (EG) and 1,4‐cyclohexane dimethanol (CHDM). The polymer compositions were determined by nuclear magnetic resonance (NMR) and the molecular weights were determined using size exclusion chromatography (SEC). The polyesters were characterized by dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and thermogravimetric analysis (TGA). The copolyester based on DMCD‐2 was observed to have a higher glass transition temperature (Tg up to 115 °C) than the other copolyesters of this study. For poly[x(DMCD‐2)y(DMCD) 30(EG)70(CHDM)], Tg increases linearly with increase of DMCD‐2 mole content. DMA showed that all of the cycloaliphatic copolyesters have secondary relaxations, resulting from the conformational transitions of the cyclohexylene rings. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2162–2169, 2010  相似文献   

10.
Random copolyesters of dimethyl terephthalate (DMT), ethylene glycol (EG), and butane-1,4-diol (BD) and the homopolyesters poly(ethylene terephthalate) (PET) and poly(butylene terephthalate) (PBT) have been subjected to degradation and pyrolysis studies. Differential thermal analysis (DTA) showed that the decomposition temperature is dependent on the percentage of EG and BD present in the copolyesters. Thermal volatilization analysis (TVA) also showed that the decomposition temperature is dependent on the percentage of EG and BD present in the copolyesters. The trend for the decomposition temperatures obtained from TVA studies for these copolyesters is similar to such other thermal properties as melting temperature Tm, ΔHf, ΔHc, etc. The subambient thermal volatilization analysis (SATVA) curves obtained for these polymers are also presented. The SATVA curve is the fingerprint of the total volatile products formed during the degradation in high vacuum. The isothermal pyrolysis of these materials was carried out in high vacuum at 450°C. The products formed were separated in a gas chromatograph and were subsequently identified in a mass spectrometer. The major pyrolysis products from PBT were butadiene and tetrahydrofuran, whereas those from PET were ethylene and acetaldehyde. The ratio of acetaldehyde to ethylene increases with the EG content in the copolyester, suggesting a different decomposition mechanism compared to the decomposition mechanism of PBT and PET.  相似文献   

11.
A series of biodegradable aliphatic/aromatic copolyesters, poly(butylene terephthalate)-co-poly(butylene cyclohexanedicarboxylate)-b-poly(ethylene glycol) (PTCG), were prepared by a two-step melt polycondensation method and characterized by means of GPC, FTIR, NMR, DSC, TGA, etc. The effects of aliphatic ester content on the physical, mechanical and thermal properties, as well as in vitro and in vivo degradation behaviors were investigated. The decrease in mechanical strength was observed with an increase in poly(butylene cyclohexanedicarboxylate) (PBC) molar fraction. DSC results showed one melting point and two glass transition temperatures in all samples, and the melting temperature was found to go down gradually as more cyclohexanedicarboxylic acid (CHDA) was added. During the in vitro and in vivo degradation processes, erosion of the surface was dominant as evidenced by scanning electron microscopic observations. The copolyesters containing many CHDA units were featured by the higher water uptake and faster degradation due to much richer amorphous phase within them.  相似文献   

12.
Poly(butylene succinate-co-butylene dimerized fatty acid) (P(BS-co-BDFA)) copolyesters were synthesized from succinic acid (SA) and dimerized fatty acid (DFA) with 1,4-butanediol (BDO) through a two-step process of esterification and polycondensation. The polyester compositions and physical properties of copolyesters were investigated by GPC, 1H NMR and 13C NMR, DSC, WAXD, DMA, TGA, tensile and rheology test. The melting temperature (Tm), and crystallization temperature (Tc) decreased gradually as the content of DFA monomer increased. P(BS-co-BDFA) copolyesters showed the same crystal structure as the PBS homopolyester. Besides, TGA results indicated that P(BS-co-BDFA)s were of higher thermal stabilities. Moreover, it was found that the synthesized P(BS-co-BDFA)s showed the maximum elongation at break (591%) as the DFA contents were 10 mol%. Rheology analysis indicated that the viscoelastic behavior of the polyesters greatly depended on the molecular weight of polyesters.  相似文献   

13.
In this work, the feasibility of replacing petroleum-based poly(ethylene terephthalate) (PET) with fully bio-based copolyesters derived from dimethyl 2,5-thiophenedicarboxylate (DMTD), dimethyl 2,5-dimethoxyterephthalate (DMDMT), and polysaccharide-derived 1,6-hexanediol (HDO) was investigated. A systematic study of structure-property relationship revealed that the properties of these poly(thiophene–aromatic) copolyesters (PHS(20–90)) can be tailored by varying the ratio of diester monomers in the reaction, whereby an increase in DMTD content noticeably shortened the reaction time in the transesterification step due to its higher reactivity as compared with DMDMT. The copolyesters had weight-average molar masses (Mw) between 27,500 and 38,800 g/mol, and dispersity Đ of 2.0–2.5. The different polarity and stability of heterocyclic DMTD provided an efficient mean to tailor the crystallization ability of the copolyesters, which in turn affected the thermal and mechanical performance. The glass transition temperature (Tg) could be tuned from 70–100 °C, while the tensile strength was in a range of 23–80 MPa. The obtained results confirmed that the co-monomers were successfully inserted into the copolyester chains. As compared with commercial poly(ethylene terephthalate), the copolyesters displayed not only enhanced susceptibility to hydrolysis, but also appreciable biodegradability by lipases, with weight losses of up to 16% by weight after 28 weeks of incubation.  相似文献   

14.
In this work, three alipharomatic polyesters—poly(propylene terephthalate) (PPT), poly(propylene isophthalate) (PPI), and poly(propylene naphthalate) (PPN)—were prepared and studied with the aliphatic diol 1,3‐propanediol and the corresponding aromatic diacids. Their synthesis was performed by the two‐stage melt polycondensation method in a glass batch reactor. The thermal characterization of these polyesters was carried out with different thermal techniques such as simultaneous thermogravimetry/differential thermal analysis, thermomechanical analysis (TMA), and dynamic thermomechanical analysis. From the recorded values for the glass‐transition temperature (Tg) and melting temperature with all the aforementioned techniques, it could be said that they were in good agreement. According to the thermogravimetric results, PPT and PPI showed about the same thermal stability, whereas PPN seemed to be somewhere more thermostable. Remarkably, a transition existed immediately after Tg that was realized by the first derivative of TMA, and it was characterized as a midrange transition. For all polyesters, the average coefficient of linear thermal expansion was calculated with TMA. The secondary relaxations Tβ and Tγ, recorded with dynamic mechanical thermal analysis, were mainly affected by the kinds of monomers. Concerning the mechanical properties, PPN had the highest tensile strength at break, whereas PPT had the highest elongation at break. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 3998–4011, 2005  相似文献   

15.
To obtain a biodegradable polymer material with satisfactory thermal properties, higher elongation and modulus of elasticity, a new copolyester, poly(hexylene terephthalate-co-lactide) (PHTL), was synthesized via direct polycondensation from terephthaloyl dichloride, 1,6-hexanediol and oligo(lactic acid). The resulting copolyesters were characterized by proton nuclear magnetic resonance (1H NMR), differential scanning calorimetry (DSC), thermogravimetry (TG) and wide-angle X-ray scattering (WAXS). By using the relative integral areas of the dyad peaks in 1H NMR spectrum of copolyesters PHTL, the sequence lengths of the hexylene terephthalate and lactide units in the resultant copolyesters are 3.5 and 1.5, respectively. Compared to poly(hexylene terephthalate) (PHT), PHTL has lower T m but higher T g due to the incorporation of lactide unit into the main chains of copolyesters. The degradation test of copolyesters under a physiological condition shows that the degradability of PHTL is sped up due to incorporation of lactide segments.  相似文献   

16.
This study investigated the biodegradability of PBS and bio-flour, which is a poly(butylene succinate) (PBS) bio-composite filled with rice-husk flour (RHF) reinforcing, in natural and aerobic compost soil. The percentage weight loss and the reduction in mechanical properties of PBS and the bio-composites in the compost soil burial test were significantly greater than those in the natural soil burial test. These results were supported by degraded surface of PBS and bio-composites observed through morphological study and the total colony count of natural soil was lower than that of compost soil. The biodegradability of the bio-composites was enhanced with increasing bio-flour content because the bio-flour is easily attacked by microorganisms. As the biodegradability test progressed over time up to 80 days, the molecular weight of PBS decreased in the soil burial test. We confirmed by attenuated total reflectance (FTIR-ATR) analyser that the chemical structures of PBS and the bio-composites were changed after the compost burial test. The glass transition temperature (Tg), melting temperature (Tm), crystallization temperature (Tc), heat of fusion (ΔHf) and heat of crystallization (ΔHc) of the natural and composted soil tested PBS were investigated using differential scanning calorimetry (DSC). From the results, we concluded that use of these bio-composites will reduce the environmental problems associated with waste pollution and the study findings support the predicted application of bio-composites as “green-composites” or “eco-materials”.  相似文献   

17.
Fully biobased aliphatic random poly(1,3‐propylene succinate‐ran‐1,3‐propylene adipate) (PPSA) copolyesters with high molar mass were synthesized with different macromolecular architectures based on various succinic acid/adipic acid (SA/AA) molar ratio, by transesterification in melt. Titanium (IV) isopropoxide was used as an effective catalyst. All synthesized copolyesters were fully characterized by different chemical and physicochemical techniques including NMR, size exclusion chromatography, FTIR, wide angle X‐ray scattering, differential scanning calorimetry, and thermogravimetric analysis. The final copolyesters molar compositions were identical to the feed ones. The different sequences based on succinate and adipate segments were randomly distributed along the chains. All the corresponding copolyesters showed an excellent thermal stability with a degradation onset temperature higher than 290 °C, which increased with the adipate content. According to their compositions and architectures, PPSA copolyesters can exhibit or not a crystalline phase, at room temperature. Tg of copolyesters decreased with the adipate content due to the decrease in the chains mobility, following the Gordon–Taylor relation. PPSA showed a pseudo eutectic melting behavior characteristic of an isodimorphic character. Finally, PPSA copolyesters were not able to crystallize during the cooling or the second heating run, due to the 1,3‐propanediol chemical structure, which led to amorphous materials with the exception of the polyester based solely on AA. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2738–2748  相似文献   

18.
The course of a randomization process in the melt of poly(ethylene terephthalate) and other polyesters during melt-blending was observed by determining changes in Tg, Tc and Tm measured by DSC. the melting point of isothermic annealed copolyesters is the most advantageous criterion for determining the degree of randomization process. On the other hand, Tg and Tc are influenced by further processes taking place during the melt-blending of two kinds of homopolyesters, e.g. the changes of molecular mass and molecular mass distribution etc.  相似文献   

19.
In this study malic acid were extracted from aqueous solution by different solvents with and without trioctylamine (TOA). The TOA was dissolved in five different esters (dimethyl phthalate, dimethyl adipate, dimethyl succinate, dimethyl glutarate, and diethyl carbonate), five different alcohols (isoamyl alcohol, hexan-1-ol, octan-1-ol, nonan-1-ol, and decan-1-ol) and two different ketones (diisobutyl ketone (DIBK) and methyl isobutyl ketone (MIBK)). The results are reported as distribution coefficients (KD), loading factors (TT), stoichiometric loading factor (TS), separation factor (Sf) and extraction efficiency (E). The most effective solvent was determined as isoamyl alcohol with a distribution value coefficient of 17.811. The maximum values of equilibrium complexation constants in isoamyl alcohol for (acid:amine) (1:1) K11 and (2:1) K21 were 9.9 and 225.6, respectively. A linear solvation energy relationship (LSER) was accurately regressed to the experimental distribution coefficients.  相似文献   

20.
A series of aliphatic–aromatic multiblock copolyesters consisting of poly(ethylene‐co‐1,6‐hexene terephthalate) (PEHT) and poly(L ‐lactic acid) (PLLA) were synthesized successfully by chain‐extension reaction of dihydroxyl terminated PEHT‐OH prepolymer and dihydroxyl terminated PLLA‐OH prepolymer using toluene‐2,4‐diisoyanate as a chain extender. PEHT‐OH prepolymers were prepared by two step reactions using dimethyl terephthalate, ethylene glycol, and 1,6‐hexanediol as raw materials. PLLA‐OH prepolymers were prepared by direct polycondensation of L ‐lactic acid in the presence of 1,4‐butanediol. The chemical structures, the molecular weights and the thermal properties of PEHT‐OH, PLLA‐OH prepolymers, and PEHT‐PLLA copolymers were characterized by FTIR, 1H NMR, GPC, TG, and DSC. This synthetic method has been proved to be very efficient for the synthesis of high‐molecular‐weight copolyesters (say, higher than Mw = 3 × 105 g/mol). Only one glass transition temperature was found in the DSC curves of PEHT‐PLLA copolymers, indicating that the PLLA and PEHT segments had good miscibility. TG curves showed that all the copolyesters had good thermal stabilities. The resulting novel aromatic–aliphatic copolyesters are expected to find a potential application in the area of biodegradable polymer materials. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5898–5907, 2009  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号