首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
甘志华 《高分子科学》2014,32(9):1243-1252
Oriented and non-oriented Teflon films, which were found to have the same crystalline structure, but different surface morphologies, were used to sandwich poly(butylene adipate)(PBA) films during isothermal crystallization. It was found that both the Teflon surface structure and the PBA polymorphic structure are the determining factors to induce epitaxial crystallization. The oriented Teflon film was able to induce epitaxial crystallization of PBA α crystal, while the non-oriented Teflon did not induce any epitaxial crystallization of PBA. Epitaxial crystallization did not occurred for PBA β crystals between neither the oriented nor the non-oriented Teflon films. The enzymatic degradation rate of PBA films was not determined by the epitaxial crystallization, in fact it was still dependent on the polymorphic crystal structure of PBA. The morphological changes of PBA films after enzymatic degradation confirmed again that the epitaxial crystallization only occurred for the PBA film with α crystal structure which was produced by being sandwiched between oriented Teflon films, and it happened only on the surface of PBA films.  相似文献   

2.
王学川  晏超 《高分子科学》2014,32(4):488-496
The effects of crystallization temperature and blend ratio on the polymorphic crystal structures of poly(butylene adipate)(PBA) in poly(butylene succinate)(PBS)/poly(butylene adipate)(PBS/PBA) blends were studied by means of differential scanning calorimetry(DSC), wide-angle X-ray diffraction(XRD) and atomic force microscopy(AFM). It was revealed that the polymorphism of PBA can be regulated by the blend ratio even in a non-isothermal crystallization process. The results demonstrate that high temperature favors flat-on α crystals, while low temperature contributes to edge-on β crystals. It was also found that the effect of blend ratio on the crystallization mechanism of PBA is well coincident with that of the crystallization temperature. The increment of PBS content in the PBS/PBA blend gives rise to more β-form crystals of PBA. For those PBS/PBA blends with low PBA content, the interlamellar phase segregation of PBA makes its molecular chains so difficult to diffuse from one isolated microdomain to another that high crystallization temperature and sufficiently long crystallization time will be required if the PBA α-type crystals are targeted.  相似文献   

3.
A series of bio-based poly(butylene adipate-co-butylene furandicarboxylate) (PBAFs) copolyesters were synthesized from 2,5-furandicarboxylic acid (FDCA), adipic acid (AA), and 1,4-butanediol (BDO) through a two-step polycondensation reaction. The copolyesters were characterized by 1H NMR, GPC, DSC, XRD and tensile tests, and their enzymatic degradation behaviors were also investigated. They were random copolymers whose composition was well controlled and the weight average molecular weight (Mw) ranged from 54,100 to 76,800 g/mol. By combining the results of DSC and XRD, with increasing FDCA content, PBAFs changed from semi-crystalline polymers to nearly amorphous polymers, then to semi-crystalline polymers again. Specifically, the crystallizability and melting temperature (Tm) decreased with FDCA content 0–50 mol%, but rose again at FDCA content 75–100 mol%. And, the glass transition temperature (Tg) increased continuously with increasing FDCA content. Consequently, the tensile modulus and strength decreased but the ultimate elongation increased at lower FDCA content (0–50 mol%), which were converse at higher FDCA content (75–100 mol%). Especially, the P(BA-40 mol% BF) shows outstanding elasticity and rebound resilience. In addition, the influences of FDCA content on the enzymatic degradation by lipase from porcine pancreas were studied in terms of the weight loss and morphological change. At FDCA content of 0–50 mol%, the copolyesters showed biodegradability but only the degradation rate of P(BA-10 mol% BF) was faster than PBA. When the FDCA content were 75–100 mol%, they were actually un-degradable. Thus, depending on their composition, PBAFs might find applications from biodegradable elastomers to thermoplastics.  相似文献   

4.
The effects of nucleating agent multimethyl-benzilidene sorbitol (TM6) on crystallization and morphology of poly(butylene adipate) (PBA) with polymorphic crystal structures were studied by means of differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD) and polarized optical micrographs (POM). In addition to the heterogeneous nucleation, TM6 changes the formation conditions of PBA polymorphic crystals. The addition of TM6 is favorable for the formation of PBA α-form crystals, resulting in the morphological changes from spherulites to interpenetrated fibrils. The influences of TM6 on enzymatic degradation of PBA were studied in terms of the morphological change and weight loss. The results indicate that the α-form crystals induced by TM6 show much slower degradation rate. This work provides an efficient method to control the polymorphic crystal structure and further to regulate the biodegradation rate of polymer materials through modulating the homogeneous and heterogeneous nucleation modes by adding nucleating agents.  相似文献   

5.
热处理对聚己二酸丁二醋多晶结构和降解行为的影响   总被引:1,自引:0,他引:1  
通过熔融结晶并结合退火处理方法得到多晶结构的聚己二酸丁二酯(PBA)及具有不同热历史的热力学稳定的a晶型,采用广角X射线衍射仪(WAXD)、原子力显微镜(AFM)和差示扫描量热仪(DSC)研究了PBA的多晶结构、晶体尺寸和结晶形貌,跟踪了退火处理PBA的生物降解行为.结果表明,分子链在相同晶格排列中围绕c轴空间取向的不...  相似文献   

6.
A series of aliphatic biodegradable polyesters modified with fumaric residues was synthesized by transesterification in the melt of dimethyl succinate, dimethyl fumarate and 1,4-butanediol. The amount of unsaturation, originating from the fumaric acid residues in the polyesters chains was varied from 5 to 20 mol%. The molecular structure and composition of the polyesters were determined by 1H NMR spectroscopy. The effects of the content of fumaric residues on the thermal and thermo-oxidative properties of the synthesized polyesters were investigated using differential scanning calorimetry (DSC) and thermogravimetric analysis. The degree of crystallinity was determined by DSC and wide angle X-ray scattering. The degrees of crystallinity of the unsaturated copolyesters were reduced, while the melting temperatures were higher in comparison to poly(butylene succinate). Biodegradation of the synthesized copolyesters was estimated in enzymatic degradation tests using a buffer solution with Rhizopus arrhizus lipase at 37 °C. Although the degree of crystallinity of the copolyesters decreases slightly with increasing unsaturation, the biodegradation is not enhanced suggesting that not only the chemical structure and molecular stiffness but also the morphology of the spherulites has an influence on the biodegradation properties. The highest biodegradability was observed for the copolyesters containing 5 and 10 mol% of fumarate units.  相似文献   

7.
In this work, the enzymatic degradation of poly(butylene succinate-co-butylene terephthalate) (PBST) copolyesters was studied using the lipase from Pseudomonas (Lipase PS®). The biodegradation behavior was found to strongly depend on the overall impacts of several important factors as the BT comonomer structure and molar content, thermal characteristics, morphology, the enzyme-substrate, and so forth. Further, the biodegraded residual film samples were allowed to be analyzed by means of gel permeation chromatography (GPC), proton nuclear magnetic resonance (1H NMR), differential scanning calorimeter (DSC), small angle X-ray scattering (SAXS), and scanning electron microscope (SEM). On the experimental evidences, an exo-type mechanism of enzymatic chain hydrolysis preferentially occurring in the amorphous region was suggested for the PBST film samples.  相似文献   

8.
Poly(butylene succinate-co-butylene dimerized fatty acid) (P(BS-co-BDFA)) copolyesters were synthesized from succinic acid (SA) and dimerized fatty acid (DFA) with 1,4-butanediol (BDO) through a two-step process of esterification and polycondensation. The polyester compositions and physical properties of copolyesters were investigated by GPC, 1H NMR and 13C NMR, DSC, WAXD, DMA, TGA, tensile and rheology test. The melting temperature (Tm), and crystallization temperature (Tc) decreased gradually as the content of DFA monomer increased. P(BS-co-BDFA) copolyesters showed the same crystal structure as the PBS homopolyester. Besides, TGA results indicated that P(BS-co-BDFA)s were of higher thermal stabilities. Moreover, it was found that the synthesized P(BS-co-BDFA)s showed the maximum elongation at break (591%) as the DFA contents were 10 mol%. Rheology analysis indicated that the viscoelastic behavior of the polyesters greatly depended on the molecular weight of polyesters.  相似文献   

9.
A series of poly(vinyl alcohol)/poly(butyl acrylate-co-methyl methacrylate) [PVA/P(BA-co-MMA)] blend films with different P(BA-co-MMA) content were prepared by the solution casting method. Surface morphologies of the PVA/P(BA-co-MMA) blend films were studied by scanning electron microscopy and atomic force microscopy. Thermal, mechanical, and chemical properties of PVA/P(BA-co-MMA) blend films were investigated by differential scanning calorimeter, thermogravimetric analysis, tensile tests, and surface contact angle tests. It was revealed that the introduction of P(BA-co-MMA) could affect the properties of the PVA films. The results also showed that, when P(BA-co-MMA) mole content is 3 %, the tensile strength and the surface contact angle of the polymer blend film are 20.4 MPa and 43.5°, respectively, suggesting that the polymer blend film holds both a better mechanical property and a better chemical property.  相似文献   

10.
In this work, new investigations on the effect of comonomer sequential structure on the thermal and crystallization behaviors and biodegradability have been implemented for the biodegradable poly(butylene succinate‐co‐butylene terephthalate) (PBST) as well as aliphatic poly(butylene succinate) (PBS). At first, these copolyesters were efficiently synthesized from dimethyl succinate and/or dimethyl terephthalate and 1,4‐butanediol via condensation polymerization in bulk. Subsequently, their molecular weights and macromolecular chain structures were analyzed by gel permeation chromatography (GPC) and nuclear magnetic resonance (NMR) spectroscopy. By means of differential scanning calorimeter (DSC) and wide‐angle X‐ray diffractometer (WAXD), thermal and crystallization behaviors of these synthesized aromatic–aliphatic copolyesters were further explored. It was demonstrated that the synthesized copolyesters were revealed to have random comonomer sequential structures with thermal and crystallization properties strongly depending on their comonomer molar compositions, and that crystal lattice structures of the new crystallizable copolyesters shifted from the monoclinic crystal of semicrystalline PBS to triclinic lattice of the poly(butylene terephthalate) (PBT) with increasing the terephthalate comonomer composition, and the minor comonomer components were suggested to be trapped in the crystallizable component domains as defects. In addition, the enzymatic degradability was also characterized for the copolyesters film samples. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1635–1644, 2006  相似文献   

11.
Polymorphic crystals and complex multiple melting behavior in an aliphatic biodegradable polyester, poly(butylene adipate) (PBA), were thoroughly examined by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). Further clarification on mechanisms of multiple melting peaks related to polymorphic crystal forms in PBA was attempted. More stable α‐form crystal is normally favored for crystallization from melt at higher temperatures (31–35 °C), or upon slow cooling from the melt; while the β‐form is the favored species for crystallization at low temperatures (25–28 °C). We further proved that PBA crystallization could also result in all α‐form even at low temperatures (25–28 °C) if it crystallized with the presence of prior α‐form nuclei. PBA packed with both crystal forms could display as many as four melting peaks (P1 ? P4, in ascending temperature order). However, PBA initially containing only the α‐crystal exhibited dual melting peaks of P1 and P3, which are attributed to dual lamellar distributions of the α‐crystal. By contrast, PBA initially containing only the β‐crystal could also exhibit dual melting peaks (P2 and P4) upon scanning. While P2 is clearly associated with melting of the initial β‐crystal, the fourth melting peak (P4), appearing rather broad, was determined to be associated with superimposed thermal events of crystal transformation from β‐ to α‐crystal and final re‐melting of the new re‐organized α‐crystal. Crystal transformation from one to the other or vice versa, lamellae thickening, annealing at molten state, and influence on crystal polymorphism in PBA were analyzed. Relationships and mechanisms of dual peaks for isolate α‐ or β‐crystals in PBA are discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1662–1672, 2005  相似文献   

12.
In this study, a novel method to determine the cloud point temperature variation in aqueous solutions of thermoresponsive homo- and copolymers was developed. Poly(N-vinylcaprolactam) (PVCL) and triblock copolymers of poly(t-butyl acrylate-co-acrylic acid)-b-poly(N-vinylcaprolactam)-b-(t-butyl acrylate-co-acrylic acid) (P[(tBA-co-AA)-b-PVCL-b-P(tBA-co-AA)] were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization and used as models. The incorporation of AA units (hydrophilic segments) into the polymeric chain of PVCL influenced the phase transition, increasing the cloud point temperature of the final copolymer. The cloud point temperatures of the PVCL and the triblock copolymer P(tBA-co-AA)-b-PVCL-b-P(tBA-co-AA) were determined by measuring the transmittance of aqueous solutions of the polymers in a Turbiscan Lab instrument in the range of 29 to 40 C. This is the first study in which Turbiscan Lab is used to determine the cloud point temperature.  相似文献   

13.
The structure evolution of poly(butylene adipate) (PBA) during isothermal melt crystallization and phase transition processes is investigated by Fourier transform infrared spectroscopy (FTIR). Detailed IR spectra analysis and band assignment are performed to disclose the bands sensitive to the alpha-form crystalline order of PBA. It is revealed from the in situ IR study that the functionalities within PBA chains alter simultaneously during the melt crystallization process. From the analysis of the spectral changes, it is found that band shifts take place during the phase transition process of PBA from its metastable beta-form crystal to the stable alpha-form. Notable band shifts in the 1300-1100 cm(-1) region indicate that the twist of polymer chains in the alpha-form is located in the C-O-C and C-O linkages. Moreover, the results elucidated that the different segments of molecular chains tune up their conformations synchronously during the beta to alpha crystal transition process of PBA. It is suggested that the betaalpha phase transition process proceeds randomly throughout the solid at a constant rate.  相似文献   

14.
This paper presents the degradation trends of selected polyhydroxyalkanoate (PHA) films in a tropical mangrove environment. The biodegradability of homopolymer poly(3-hydroxybutyrate) [P(3HB)] and its co-polymers, poly(3-hydroxybutyrate-co-5 mol% 3-hydroxyvalerate) [P(3HB-co-5 mol% 3HV)] and poly(3-hydroxybutyrate-co-5 mol% 3-hydroxyhexanoate) [P(3HB-co-5 mol% 3HHx)], was investigated along with P(3HB) films containing 38 wt% titanium dioxide (TiO2) [P(3HB)-38 wt% TiO2]. The degradation of these formulations was monitored for 8 weeks at three different zones in an intermediate mangrove compartment along Sungai Pinang, adjacent to a famous fishing village on south of Penang Island. The degradation rate was observed both on the surface and in the sediment and was expressed in percentage of weight loss. The microbial enumeration done using sediment from the different zones indicated similar colony-forming unit (CFU) counts even though differences were noticed in the degradation profile of the various films in the respective zones. The results obtained revealed that co-polymers disintegrated at similar or higher rate than the homopolymer, P(3HB). However, the incorporation of TiO2 into PHB films caused the degradation rate of P(3HB)-38 wt% TiO2 composite film to be far slower than all the other PHA films. The overall rate of degradation of all PHA films placed on the sediment surface was slower than those buried in the sediment. Microscopic analyses showed that the surface morphology of P(3HB-co-5 mol% 3HHx) was more porous compared to P(3HB) and P(3HB-co-5 mol% 3HV) films, which may be an important factor for its rapid degradation.  相似文献   

15.
Plasticised corn flour/poly(butylene succinate-co-butylene adipate) (PBSA) materials were prepared by extrusion and injection in order to study the impact of PBSA ratio on their physicochemical properties and biodegradability. Scanning electron microscopy observations showed that corn flour and PBSA are incompatible. Three types of morphology have been observed: (i) starch dispersed in a PBSA matrix, (ii) a “co-continuous-like” morphology of starch and PBSA, and (iii) PBSA dispersed in a starch matrix. As expected, the extent of plasticised corn flour starch hydrolysis by amylolytic enzymes decreased when the amount of PBSA increased. Addition of a lipase to hydrolyse PBSA ester bonds enhanced enzymatic hydrolysis of starch by amylolytic enzymes in materials where PBSA formed a continuous phase. This suggests that PBSA formed a barrier restricting the access of amylolytic enzymes to starch. This was consistent with aerobic and anaerobic biodegradation assays, which also showed lower biodegradability of materials containing a majority of PBSA.  相似文献   

16.
The effect of nucleating agents on the polymorphic crystallization behavior of poly(butylene adipate) (PBA) was studied with four kinds of commercially available nucleating agents, such as talc and boron nitride. The crystal structures of the α and β forms were studied with wide‐angle X‐ray diffraction. The β‐to‐α‐crystal transformation of PBA in the absence and presence of the nucleating agents in isothermal crystallization and nonisothermal crystallization processes was studied with differential scanning calorimetry and polarized optical microscopy. In both isothermal and nonisothermal crystallization, the introduction of nucleating agents selectively initiated the nucleation of the α‐form crystal, which was relatively slow in the absence of nucleating agents. The nucleating activity of the four kinds of nucleating agents in the crystallization of the PBA α‐form crystal was determined by the study of the nonisothermal crystallization, spherulite morphology, and isothermal kinetics. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 2340–2351, 2005  相似文献   

17.
The multiple melting behavior of biodegradable poly(butylene succinate-co-terephthalate) (PBST) copolyester with 70 mol% aromatic units isothermally crystallized at various temperatures was investigated by wide angle X-ray diffraction, differential scanning calorimetry (DSC) and modulated DSC (MDSC). PBST copolyester exhibited at most three melting peaks in the DSC heating traces and the dual lamellar population model was utilized for interpreting the origin of the multiple melting behavior. Multiple melting peaks were observed even at high heating rates and the co-existence of the melting-recrystallization-remelting model was suggested. The MDSC results gave the direct evidences to the conclusion that the combination of the two models mentioned above was able to explain the multiple melting behavior of PBST copolyester properly.  相似文献   

18.
Aliphatic poly(butylene 1,12-dodecanedioate) is an interesting biodegradable polyester characterized by high thermal stability and high crystallinity, but low melting temperature. In order to improve the performances of this polymer some novel fully aliphatic random copolyesters have been prepared starting from 1,4-butanediol and different molar ratio of 1,12-dodecanedioc acid and 1,4-cyclohexanedicarboxylic acid. The copolymers have a notable resistance to thermal degradation, thermal properties which vary as a function of the composition, and maintain the mechanical characteristics of the poly(alkylene dicarboxylate). In particular, the copolymer containing the 70 mol% of 1,4-cyclohexanedicarboxylate units improves the thermal properties of the poly(butylene 1,12-dodecanedioate) and presents a very high biodegradation rate, higher than those of the two parent homopolymers. This behavior has been correlated to the low level of crystallinity of the sample and to the composition of the amorphous phase. Therefore, these novel fully aliphatic copolymers represent an interesting new class of copolyesters which can balance good physical properties and high biodegradability.  相似文献   

19.
Isolation and characterization of poly(butylene succinate)-degrading fungi   总被引:3,自引:0,他引:3  
We isolated 12 poly(butylene succinate) (PBSu)-degrading fungi from various soil environments. Among the isolates, the NKCM1706 strain exhibited the fastest degradation rate for the PBSu film (10.5 μg cm−2 h−1). Phylogenetic analysis revealed that this strain is closely related to Aspergillus fumigatus (internal transcribed spacer (ITS) identity, 100%). Further, this strain exhibited PBSu-hydrolytic activity in the presence of poly(?-caprolactone) (PCL), PBSu, and poly(butylene succinate-co-adipate) (PBSA). On adding this strain into the soil sample, the PBSu degradation rate accelerated approximately sixfold, suggesting that this strain plays a crucial role in PBSu degradation in actual soil environments. In addition to PBSu, the NKCM1706 strain could degrade PBSA, poly(ethylene succinate) (PESu), poly(3-hydroxybutyrate) (P(3HB)), and PCL.  相似文献   

20.
Adsorption effects of poly(hydroxybutyric acid) (PHB) depolymerase from Ralstonia pickettii T1 on various polymer single crystals were studied using a catalytically inactive mutant of PHB depolymerase by means of transmission electron microscopy (TEM), atomic force microscopy (AFM), and frictional force microscopy (FFM). Six types of polymer single crystals, poly[(R)-3-hydroxybutyric acid] (P(3HB)), poly[(R)-3-hydroxybutyric acid-co-6 mol% (R)-3-hydroxyvaleric acid] (P(3HB-co-6 mol% 3HV)), poly[(R)-3-hydroxybutyric acid-co-8 mol% (R)-3-hydroxyhexanoic acid] (P(3HB-co-8 mol% 3HH)), poly(l-lactic acid) (PLLA), poly(d-lactic acid) (PDLA), and polyethylene (PE), were prepared to examine the influence of an ester bond and stereoregularity of a polymer on the enzymatic adsorption. The numbers of PHB depolymerase enzymes adsorbed on P(3HB) and P(3HB-co-6 mol% 3HV) single crystals were determined as 171 and 183 enzymes/μm2 by AFM, respectively. AFM observation revealed that the concentration of PHB depolymerase enzymes adsorbed onto PLLA and PDLA single crystals is much higher compared to those on a P(3HB) single crystal, whereas the concentration of enzyme adsorbed onto PE and P(3HB-co-8 mol% 3HH) single crystals is much less. In addition, the single crystals of each polymer were characterized by TEM and FFM before and after enzymatic treatment by mutant for 1 h at 37 °C. The surface properties of P(3HB), P(3HB-co-6 mol% 3HV), and P(3HB-co-8 mol% 3HH) single crystals were changed by the enzymatic adsorption, whereas the internal structures were not affected. On the basis of these results, the properties of the binding domain of PHB depolymerase to polymer chain-folding surfaces have been discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号