首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This work reported the preparation and physical properties of biodegradable nanocomposites fabricated using polylactic acid (PLA) and multiple organic modified montmorillonite (MMT). In order to improve the chemical compatibility between PLA and Na‐MMT, the surface of Na‐MMT was first organically modified by cetyl trimethyl ammonium bromide (CTAB) and resorcinol bis(diphenyl phosphate) (RDP) using ion‐exchange and adsorption technique. Both Fourier transform infrared and X‐ray diffraction (XRD) results indicated that CTAB and RDP molecules were intercalated into the galleries of MMT sheets to enlarge the interlayer spacing. Then, the PLA/MMT nanocomposites were prepared by a simple melt‐blending method. The XRD and TEM results of the nanocomposites indicated that the PLA polymer chains inserted into the galleries of co‐modified MMT (C‐MMT) and contained disorderedly intercalated layered silicate layers within a PLA matrix. The C‐MMT nanolayers were homogenously dispersed in PLA matrix, resulting in various property enhancement. The fabricated PLA/C‐MMT nanocomposites with 5.0 wt% addition showed significant enhancements (176%) in the storage modulus compared to that of neat PLA. The thermal stability and fire resistance were also remarkably improved. These improvements are probably because of both the physical barrier effect of the MMT nanosheets and charring effect of the C‐MMT. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

2.
Poly(propylene carbonate) (PPC) is a new biodegradable aliphatic polycarbonate. However, the poor thermal stability and low glass transition temperatures (Tg) have limited its applications. To improve the thermal properties of PPC, organophilic montmorillonite (OMMT) was mixed with PPC by a solution intercalation method to produce nanocomposites. An intercalated-and-flocculated structure of PPC/OMMT nanocomposites was confirmed by X-ray diffraction (XRD) and transmission electron microscopy (TEM). The thermal and mechanical properties of PPC/OMMT nanocomposites were investigated by thermal gravimetric analysis (TGA), differential scanning calorimetric (DSC), and electronic tensile tester. Due to the nanometer-sized dispersion of layered silicate in polymer matrix, PPC/OMMT nanocomposites exhibit improved thermal and mechanical properties than pure PPC. When the OMMT content is 4 wt%, the PPC/OMMT nanocomposite shows the best thermal and mechanical properties. These results indicate that nanocomposition is an efficient and convenient method to improve the properties of PPC.  相似文献   

3.
In this article, we successfully fabricated the bionanocomposites using cellulose nanocrystals (CNCs) and reduced graphene oxide (rGO) reinforced into biodegradable polylactic acid (PLA) matrix through melt‐mixing method. Due to the affinity difference between hydrophilic CNC and hydrophobic PLA, the surface modification of CNC was employed using quaternary ammonium salts (CTAB) as a surfactant. The nanocomposites were developed using different blend ratios of CNC/modified CNC (1, 2, and 3) wt% and (0.5 wt%) rGO into the polymer matrix. The morphology of CNC, q‐CNC (modified CNC), and nanocomposites were inspected by atomic force microscopy (AFM) and field emission scanning electron microscopy (FESEM). It is demonstrated from tensile tests that, the nanocomposite with 1 wt% CNC and rGO showed maximum tensile strength compared with PLA and its nanocomposites. Moreover, the nanocomposite with 1 wt% CNC and rGO was also having maximum thermal stability. From cytotoxicity evaluation, it is observed that all the nanocomposites are nontoxic and cytocompatible to HEK293 cells. In addition to this, the nanocomposite with q‐CNC showed enhanced barrier properties compared with PLA and PLA/CNC/rGO nanocomposite. The results obtained from different characterizations showed that the incorporation of surfactant onto CNC improved the dispersion in PLA but at the same time deteriorated the PLA matrix.  相似文献   

4.
提出了液相剪切剥离蒙脱土(MMT)制备寡层纳米片(MNSs)并将其原位引入PLA基体的方法, 可经简单的刮刀涂覆法(Blade coating)制备MNSs质量分数为2%, 5%和10%的PLA基纳米复合薄膜. 该技术路线赋予了MNSs在PLA基体中充分剥离(片层间距可达3.11 nm)和良好取向排列以及较强的界面相互作用. 这些结构特征使得纳米复合薄膜的结晶度和力学性能得到大幅提升, 同时显著降低了氧气渗透系数. 本文不仅提出了可规模化原位剥离二维纳米片的有效方法, 更为制备高强高阻隔全降解复合材料及其结构-性能关系研究提供了思路.  相似文献   

5.
A Brabender mixer was used to deagglomerate and disperse organomodified montmorillonite Cloisite® 30B (3 wt %) in polylactide (PLA) matrix to obtain nanocomposite systems. The influence of compounding conditions such as blending time (6.5, 10, 20, and 30 min) and compression molding on the nanostructure of nanocomposites was investigated. Molecular weight changes of the PLA matrices induced by melt compounding were determined. Good rheological behavior of the PLA during melt blending with Cloisite® 30B was observed. Prolongation of the blending process improved homogenization of the nanocomposites with the formation of more intercalated and exfoliated structures as revealed by transmission electron microscopy (TEM) and X‐ray analysis. Some orientation of the silicate nanoplatelets induced by compression molding of the nanocomposites was revealed by TEM. It was found that an increase of dispersion degree of the silicate layers modified pronouncedly the physical properties of nanocomposites through an increase of thermal stability as revealed by the thermogravimetric analysis, a decrease of crystallizability of the PLA matrix during melt‐crystallization and upon heating from the glassy, amorphous state. Rheological properties of the nanocomposites determined during dynamic frequency sweep appeared to be very sensitive to the nanostructure evolution. Moreover, the scanning electron microscopy and light microscopy investigations showed the presence of the micron‐size inorganic contaminations in the nanocomposites originating from organoclay Cloisite® 30B. These inclusions were resistive to deagglomeration during melt processing. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3392–3405, 2006  相似文献   

6.
Amorphous polylactide/halloysite nanotube (PLA/HNT) nanocomposites were prepared and examined. Neat HNT and HNT treated with N,N'- ethylenebis(stearamide) (EBS) were used as nanofillers. The role of HNT and/or EBS content on the cold crystallization of amorphous PLA matrix, HNT dispersion, as well as on the dynamic mechanical and optical properties of the materials was determined.The PLA/HNT-based nanocomposites contained well-distributed nanotubes and occasionally micron-sized aggregates, especially at high loading. HNT, EBS treated HNT and EBS influenced the cold crystallization of PLA, therefore the formation of the disorder α′ and the order α crystallographic forms of PLA.The nanocomposites exhibited increased stiffness and decreased transparency compared to the neat PLA. Due to the reinforcing effect and additional specific features of HNT, the addition of the nanofiller allows tuning of the properties of the nanocomposites with amorphous PLA matrix.  相似文献   

7.
In this study, new biopolymer nanocomposites have been prepared. Fatty nitrogen compounds (FNCs); fatty amide (FA), fatty hydroxamic acid (FHA), and carbonyl difatty amide (CDFA), which were synthesized from palm oil, have been used as one of organic compounds to modify natural clay (sodium montmorillonite). The clay modification was carried out by stirring the clay particles in an aqueous solution of FA, FHA, and CDFA by which the clay layer distance increases from 1.23 to 2.71, 2.91 and 3.23 nm, respectively. The modified clay was then used in the preparation of the polylactic acid/epoxidized palm oil (PLA/EPO) blend nanocomposites. The interaction of the modifier in the clay layer was characterized by X-ray diffraction (XRD), and Fourier transform infrared (FTIR). Elemental analysis was used to estimate the presence of FNCs in the clay. The nanocomposites were synthesized by melt blending of the modified clay and PLA/EPO blend at the weight ratio of 80/20. The nanocomposites were then characterized using XRD, transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and tensile properties measurements. The XRD and TEM results confirmed the production of nanocomposites. PLA/EPO modified clay nanocomposites show higher thermal stability and significant improvement of mechanical properties in comparison with those of the PLA/EPO blend.  相似文献   

8.
In this study, biodegradable polylactic acid (PLA) and PLA nanocomposite scaffolds reinforced with magnetic and conductive fillers, were processed via fused filament fabrication additive manufacturing and their bioactivity and biodegradation characteristics were examined. Porous 3D architectures with 50% bulk porosity were 3D printed, and their physicochemical properties were evaluated. Thermal analysis confirmed the presence of ~18 wt% of carbon nanostructures (CNF and GNP; nowonwards CNF) and ~37 wt% of magnetic iron oxide (Fe2O3) particles in the filaments. The in vitro degradation tests of scaffolds showed porous and fractured struts after 2 and 4 weeks of immersion in DMEM respectively, although a negligible weight loss is observed. Greater extent of degradation is observed in PLA with magnetic fillers followed by PLA with conductive fillers and neat PLA. In vitro bioactivity study of scaffolds indicate enhancement from ~2.9% (PLA) to ~5.32% (PLA/CNF) and ~ 3.12% (PLA/Fe2O3). Stiffness calculated from the compression tests showed decrease from ~680 MPa (PLA) to 533 MPa and 425 MPa for PLA/CNF and PLA/Fe2O3 respectively. Enhanced bioactivity and faster biodegradation response of PLA nanocomposites with conductive fillers make them a potential candidate for tissue engineering applications such as scaffold bone replacement and regeneration.  相似文献   

9.
Multi-walled carbon nanotube (MWCNT) reinforced polylactide (PLA) nanocomposites were injected molded into a mold with micro needle patterns. In order to alleviate the hesitation effect caused by an increased melt viscositgy of PLA/CNT nanocomposites, the effects of the injection speed and holding pressure on the replication property were investigated. The effects of MWCNTs on the crystallization, thermal behavior, replication properties, replication and surface properties of micro injection molded PLA/CNT nanocomposites were investigated. An analysis of crystallinity and thermal behavior indicated that the MWCNTs promoted the unique α’ to α crystal transition of PLA, leading to an enhancement of surface modulus and hardness, as measured using a nanoindentation technique. The specific interaction between PLA and MWCNTs was characterized using an equilibrium melting point depression technique. Furthermore, the MWCNTs increased the activation energy for thermal degradation of PLA due to the physical barrier effect. The improved replication quality of the microfeatures in the PLA/MWCNT nanocomposites has been achieved by elevating injection speed and holding pressure, which enhances the polymer filling ability within the micro cavity. A replication ratio greater than 96% for the micro injection molded PLA/CNT nanocomposites were achieved at holding pressure of 100 MPa and injection speed of 120 mm/s. This study shows that processing conditions significantly influence the replication and surface properties of micro injection molded PLA/CNT nanocomposites.  相似文献   

10.
Polylactide nanocomposites with multi-walled carbon nanotubes (PLA/MWCNT) in the form of porous foams made of a biocompatible, biodegradable and environmentally friendly polymer with a small amount of carbon nanotubes, were investigated in this work. Additionally, PLA/MWCNT porous nanocomposites were coated with MWCNTs using the electrophoretic deposition method (EPD). All samples were characterized by a porosity of about 90%, showing pore sizes in the range of 100 to 200 μm, for PLA/MWCNT foam, however, EPD deposition resulted in an decrease in the number of smaller pores in PLA/MWCNT + MWCNT (EPD) foam. The porous polymer (PLA) matrix, shows almost twofold increase in crystallinity while depth penetrating the volume of the sample. The crystallinity, of the PLA/MWCNT foam, at first is growing then it gradually lowers, while for the PLA/MWCNT + MWCNT(EPD) foam almost does not change. This behavior points toward significant distinction between surface and interior of the samples. A detailed analysis of Raman spectra indicates related carbon structures occurring in the nanomaterial foams: graphene and graphite phases, CNT and also carbon amorphous phases. The characteristics of a single-shell vibration are visible by the character of the G-band. The estimated crystallite size in PLA/MWCNT + MWCNT(EPD) is about 3 times smaller than that in the PLA/MWCNT.  相似文献   

11.
Preparation of PLA based nanocomposites was carried out by using two different nanofillers: expanded graphite and organically modified montmorillonite. The addition and co-addition of these nanofillers to PLA using the melt-blending technique provides nanocomposites that showed significant enhancements in rigidity, thermal stability and fire retardancy of the polymer matrix. The presence of dispersed graphite nanolayers in PLA significantly accelerated the polyester crystallization, whereas the essential increase of thermal resistance is mainly connected to the addition of organoclay. The structure of the nanocomposites was examined by Wide Angle X-ray Scattering Analysis and Transmission Electron Microscopy. The improvement of thermal and mechanical properties obtained by the presence of both nanoparticles in PLA were associated to the good (co)dispersion and to the co-reinforcement effect, whilst the fire retardant properties were found to be related to the combined additive action of both nanofillers.  相似文献   

12.
通过微波水解法制备了ZnO柱撑皂石,并以其为加工助剂制备了聚乳酸(PLA)/ZnO柱撑皂石纳米复合材料.通过X射线衍射(XRD)、扫描电子显微镜(SEM)、透射电子显微镜(TEM)、对ZnO柱撑皂石及PLA/ZnO柱撑皂石纳米复合材料的结构进行了表征,并对其力学性能和热稳定性能进行了测试.微观结构分析表明,ZnO柱撑皂石呈现剥离状,并均匀分散在PLA基质中.力学性能研究表明0.3%ZnO柱撑皂石的加入有助于改善PLA复合材料的断裂伸长率.SEM分析表明PLA复合材料的断面发生明显改变,表现良好韧性;DSC结果显示纳米ZnO柱撑皂石可以降低复合材料的玻璃化转变温度、结晶温度,有助于提高PLA复合材料的结晶度,与XRD分析相吻合;热重分析表明ZnO柱撑皂石可以提高PLA复合材料的热稳定性.测试结果表明,ZnO柱撑皂石在PLA基质中起到了异相成核的作用,促进了PLA基质的结晶.  相似文献   

13.
Polyurethanes with controllable biodegradable properties have been considered for biomedical applications. However, the potential toxicity of their biodegraded by-products is still a concern. In this study, biodegradable polyurethanes based on poly(?-caprolactone) (PCL) and/or poly(ethylene glycol) as soft segments and biodegradable polyurethanes containing montmorillonite nanoparticles were synthesized and were subjected to in vitro biodegradation for 4 months. The post-degraded polyurethanes and nanocomposites were characterized by infrared spectroscopy (FTIR), X-ray diffraction (XRD) and small angle X-ray scattering (SAXS). The toxicity of the biodegradation by-products was evaluated by measuring their effect on the viability of retinal cells. FTIR results indicated that hard segments of the biomaterials were preserved during biodegradation, and suggested that the ester bonds of the PCL incorporated into the soft segments were hydrolytic broken. XRD data indicated also that the soft segments crystallized as a result of the hydrolysis of PCL ester bonds and re-organization of the amorphous phase during annealing at 37 °C. As the biodegradation of the biomaterials induced the formation of soft segment lamella crystals, a complex nanostructure was formed, resulting in the enhancement of the small angle X-ray scattering. The by-products were non-cytotoxic to the retinal cells. These results suggest that the hydrolytic unstable polyurethanes and nanocomposites can be possible candidates for ophthalmological applications.  相似文献   

14.
Polylactic acid (PLA) was modified by poly (butylene adipate-co-terephthalate) (PBAT) and nano-attapulgite (AT) using the melt blending technique. Ethylene-butyl acrylate-glycidyl methacrylate (E-BA-GMA) was used as a compatibilizer which can bond the AT nanoparticles with PLA/PBAT matrix by interaction between the epoxy and hydroxyl groups. The effects of the AT content on the mechanical properties, thermal properties, crystallinity and morphology of PLA/PBAT/ATT nanocomposites were investigated. The results showed that the tensile strength, elongation at break and impact strength of PLA/PBAT could be simultaneously increased by incorporating AT nanoparticles. PLA/PBAT/AT nanocomposites possessed higher thermal stability than pure PLA/PBAT. In the ternary composite system of PLA/PBAT/AT, AT acted as a heterogeneous nucleating agent and was able to increase the crystallization temperature. When the AT content was low (≤2.5 wt%), AT nanoparticles could uniformly disperse in the PLA/PBAT matrix. In general, AT was an effective filler to reinforce and toughen PLA/PBAT blend simultaneously, and the PLA/PBAT/AT nanocomposite with 2.5 wt% AT exhibited a good combination of strength and toughness.  相似文献   

15.
Poly(lactic acid)‐grafted multiwalled carbon nanotubes (MWNT‐g‐PLA) were prepared by the direct melt‐polycondensation of L ‐lactic acid with carboxylic acid‐functionalized MWNT (MWNT‐COOH) and then mixed with a commercially available neat PLA to prepare PLA/MWNT‐g‐PLA nanocomposites. Morphological, thermal, mechanical, and electrical characteristics of PLA/MWNT‐g‐PLA nanocomposites were investigated as a function of the MWNT content and compared with those of the neat PLA, PLA/MWNT, and PLA/MWNT‐COOH nanocomposites. It was identified from FE‐SEM images that PLA/MWNT‐g‐PLA nanocomposites exhibit good dispersion of MWNT‐g‐PLA in the PLA matrix, while PLA/MWNT and PLA/MWNT‐COOH nanocomposites display MWNT aggregates. As a result, initial moduli and tensile strengths of PLA/MWNT‐g‐PLA composites are much higher than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, which stems from the efficient reinforcing effect of MWNT‐g‐PLA in the PLA matrix. In addition, the crystallization rate of PLA/MWNT‐g‐PLA nanocomposites is faster than those of neat PLA, PLA/MWNT, and PLA/MWNT‐COOH, since MWNT‐g‐PLA dispersed in the PLA matrix serves efficiently as a nucleating agent. It is interesting that, unlike PLA/MWNT nanocomposites, surface resistivities of PLA/MWNT‐g‐PLA nanocomposites did not change noticeably depending on the MWNT content, demonstrating that MWNTs in PLA/MWNT‐g‐PLA are wrapped with the PLA chains of MWNT‐g‐PLA. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
任杰  李建波 《高分子科学》2016,34(6):785-796
To minimize the loading level of the char-forming phosphorus based flame retardants in the poly(lactic acid) (PLA) with reduced flammability, we have developed the flame-retarded PLA nanocomposites by melt blending method incorporating organically modified montmorillonite (OMMT) and aluminium diethylphosphinate (AlPi) additives. The influence of AlPi and OMMT on flame retardancy and thermal stability of PLA was thoroughly investigated by means of the limiting oxygen index (LOI), UL94 test, cone calorimeter, X-ray diffraction (XRD), thermogravimetric analysis and scanning electronic microscopy (SEM). The experimental results show that the PLA/AlPi/OMMT system has excellent fire retardancy. The LOI value increases from 19% for pristine PLA to 28% for the flame-retarded PLA. Cone calorimeter analysis of the PLA/AlPi/OMMT exhibits a reduction in the peak heat release rate values by 26.2%. Thermogravimetric analysis and SEM of cone calorimeter residues indicate that OMMT significantly enhances the thermal stability, promotes char-forming and suppresses the melt dripping. The research of this study implies that the combining of the flame retardant and organoclay results in a synergistic effect. In addition, the flame-retarded PLA nanocomposite also exhibits notable increase in the impact strength and the elongation at break.  相似文献   

17.
Plasticized polylactide (PLA) – layered silicate nanocomposites were obtained by melt blending PLA with polyethylene glycol as plasticizer (20 wt %) and with different montmorillonite fillers: Cloisite® 20A, Cloisite® 25A, and Cloisite® 30B (from 1 to 10 wt %). Comparative samples of melt‐blended polylactide (without filler) and plasticized PLA with 20 wt % PEG were considered as well. Samples have been aged for 1 and 4 years and their chemical and physical characteristics were compared with not aged reference ones. It was found that molecular weight of the PLA decreased upon melt‐processing and aging, particularly when the Cloisite content increased, without a clear relation to the nature of the organo‐modifier. On the contrary, the PEG plasticizer was practically undegraded upon melt processing and aging. Structural studies revealed that plasticized PLA and plasticized PLA‐based nanocomposites are unstable in time of aging and undergo deplasticization. They showed, after aging, the presence of a thin PEG crystalline layer at the surface of the samples and improved the order in the PLA matrix to a higher extent in plasticized polylactide than in plasticized nanocomposite (due to clay stabilization effect). The amount of PEG diffusing toward sample surface was correlated with aging time, molecular weight of PLA matrix, and Cloisite® type, in clear relation to the extent of intercalation with PLA and PEG. Some modifications of the viscoelastic properties of PLA matrix, induced by the presence of both the nanoparticlate filler and the plasticizer, as well as a deterioration of the mechanical properties upon aging were observed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 312–325, 2006  相似文献   

18.
We report here on the melt intercalation preparation of polymer/clay nanocomposites based on three commercial synthetic biodegradable polyesters: EastarBio Ultra, Ecoflex, and Bionolle, respectively. The montmorillonite clay addition is performed either by direct dispersion of Cloisite 30B in the polyester matrix or by dispersing a “PCL-grafted Cloisite 30B” masterbatch in the biodegradable polyesters. All obtained nanocomposites display an intercalated morphology as attested by X-ray diffraction measurements. The various analyses clearly show that the Bionolle (BIO) matrix gives the best results. Morphological characterization and mechanical properties of these nanocomposites also show that the “masterbatch route” leads to poor results as a consequence of the very low compatibility between the poly(ε-caprolactone) (PCL) of the masterbatch and the three other polyester matrices. In a second part, nanocomposites based on the BIO matrix are prepared by direct dispersion of the organo-clay in the presence of three different metal-based catalysts with the aim to promote transesterification reactions between the nanocomposite constituents. The mechanical properties and morphological characterization of these nanocomposites show that the tin-based catalyst (Sn) is the more efficient. Indeed, the effectiveness of transesterification reactions taking place between the ester functions of the BIO matrix and the hydroxyl groups of the organo-clay and the resulting “grafting” of BIO chains on the organo-clay surface are confirmed by thermogravimetric analyses performed after the extraction procedure. TEM observations show that this catalyst enhances the clay platelets exfoliation within the BIO matrix as a consequence of the transesterification reactions. Nanocomposites prepared in presence of Sn show better clay dispersion and enhanced stiffness with a 60% increase in Young’s modulus.  相似文献   

19.
Biocompatible/biodegradable poly(D,L-lactic acid)/layered silicate nanocomposites were prepared by the solution-intercalation film casting technique. The obtained nanocomposites present a shift of glass transition temperature (Tg) to higher values. An increase in the onset temperature of thermal degradation (Tonset) was also observed by TGA. Hydrolytic degradation of PLA nanocomposites becomes apparent after the first 3 months of immersion of specimens into deionized water. Drug release studies from PLA/organoclay nanocomposite membranes showed slightly faster release behavior in comparison with unreinforced specimens containing 5 phr guaifenesin (GFN), whereas the different organic clay modifications studied in this work, did not seem to have any effect in the release profile of GFN.  相似文献   

20.
通过原位聚合法制备了本质阻燃聚苯乙烯[P(St-co-AEPPA)]/有机改性蒙脱土(OMMT)纳米复合物[P(St-co-AEPPA)/OMMT], 并用普通聚苯乙烯/有机改性蒙脱土(PS/OMMT)复合物作为对比实验, 研究了含磷、氮单体丙烯酸羟乙基-苯氧基-二乙基磷酰胺(AEPPA)和OMMT等添加物对本质阻燃聚苯乙烯性能的影响.用X射线衍射仪(XRD)和透射电子显微镜(TEM)分析了复合材料的结构与形貌, 并对OMMT在基体中的分散机理进行了讨论.用差示扫描量热仪(DSC)、热重分析(TGA)和微型量热仪(MCC)研究了材料的热性能和燃烧性能.结果表明, AEPPA和OMMT能够显著提高基体的热稳定性和阻燃性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号