首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The interest in lignocellulosic composites has been growing in recent years because of their specific properties. In this study, a new technique of wood treatment using γ-irradiation was used. This research focuses on the influence of the gamma irradiation on the chemical composition of wood and on the nucleation ability of polypropylene matrice. The inner morphology of the transcrystalline layer was investigated using hot stage optical microscopy. Differential scanning calorimetry was used to investigate the kinetic parameters of polypropylene crystallization in the presence of wood surface. The results showed that the gamma irradiation can decrease the content of the cellulose in the wood, but it has a slightly negative effect on the transcrystallization process of polypropylene. This treatment also affects the crystal conversion and the half-time of PP crystallization. These results suggested that the gamma irradiation of wood may play a useful role in changing the microstructure of the matrice near the wood. It was observed that the nucleation of the wood surface was selective, indicating that the chemical characteristics of the lignocellulosics might have influence on the polypropylene crystallization. A possible mechanism for the appearance of transcrystallinity involving chemical composition of lignocellulosic is also proposed.  相似文献   

2.
The manufacture of composites offers the greatest flexibility to convert and utilize waste plastics, paper and wood into high-value products. This paper reports on two studies regarding the recycling of these materials. In one study, recycling was simulated by regrinding and injection-moulding composites of polypropylene (PP), polyethylene (PE) and old newsprint (ONP) eight times. The results indicated that reprocessing had only minor deleterious effect on the mechanical properties (tensile and flexural). The viscosity of neat PP decreased with repeated recycling indicating some thermo-oxidative degradation. The overall rheological character of PP composites did not change much. PE composites, on the other hand, showed increasing melt flow with reprocessing. The second study examined the effects of various coupling agents on the properties of multicomponent PP composites. Maleated polypropylene (MAPP) was the most effective coupling agent.  相似文献   

3.
In the view of producing environmentally friendly materials without compromising properties, new composites containing polypropylene as a matrix and eucalyptus wood, with or without 15% of polylactic acid, were melt processed. In order to improve compatibility between components, a chemical modification of wood with toluene-2,4-diisocyanate (TDI) was realized and evidenced by changes in FT-IR and XPS spectra. The morphological, mechanical, and thermal characterizations of the obtained composites were evaluated before and after accelerating weathering. The results showed that the material comprising 15% TDI-modified wood, PP, and 15% PLA exhibited the best properties.  相似文献   

4.
Nucleation ability of native and modified rapeseed straw during the polypropylene crystallization from the melt was investigated by the DSC method. Composites were made from isotactic polypropylene and lignocellulosic material using extrusion and injection moulding techniques. They were obtained using polypropylenes differing with respect to melt flow rates and different varieties of rapeseed straw. Chemical modification was carried out in two stages: through mercerisation and treatment with acetic acid anhydride. In the course of investigations, it was found that both native and modified rapeseed straw acted as an active nucleant of polypropylene crystallisation characterised by low values of MFR indices. It was found that for polypropylenes with high MFR values, the values of crystallization temperatures and crystallization half-time in composites were identical when compared with non-filled polymers. The investigations demonstrated that there were insignificant differences among composites containing straw from different varieties of rapeseed. The analysis of crystallization temperatures confirmed that rapeseed straw modification failed to change this parameter of the crystallization process. A similar tendency was observed in the case of changes of the half-time crystallization process. Moreover, the analysis of the crystallization temperature and crystallization half-time showed that the presence in composites of lignified rapeseed straw particles played an important role in the crystallization conditions.  相似文献   

5.
This article reports the studies of photo-oxidative behaviour of polypropylene/maleic anhydride-grafted polypropylene/organic modified montmorillonite (PP/PPgMA/OMMT) composites prepared by two different melt processing methods. Samples of pristine polypropylene (PP) and PP/PPgMA/OMMT composites were prepared in an internal mixer and in a twin screw extruder. The samples were exposed to long wavelength radiations (λ > 300 nm) for the photo-oxidation. The samples were examined by FTIR, X-ray diffraction and microscopy. Similar to the pristine (PP), it is found that the photo-oxidation process in the composites depends on the melt processing conditions, which could cause the deterioration of organic modifier of the clay and the polymer matrix. The new radicals formed in addition to the iron impurities in the montmorillonite accelerate the photo-oxidation.  相似文献   

6.
The relation between the rheological behavior and various interfacial properties ofKaolin rigid particle toughened polypropylene (PP / Kaolin) composites were studied bymeans of parallel-plate rheometer, melt flow rate apparatus, scanning electron microscopy(SEM) and other testing methods. The results show that addition of interfacial modffier toPP/Kaolin composites is advantageous to homogeneous dispersion of filler in PP matrix,formation of flexible interlayer between Kaolin particles and PP matrix and Amprovementof the melt processibility of the composites.  相似文献   

7.
The aim of this study was to investigate the effects of maleic anhydride-graft-polypropylene (MA-g-PP) as a compatibilizer and wood fiber as a lignocellulosic filler on technical properties of poly(l-lactic acid) (PLLA)/polypropylene composites. The obtained composites were characterized through mechanical tests, thermogravimetric analysis, differential scanning analyzer, and chemical analysis via Fourier transform infrared spectroscopy (FTIR), and scanning electron microscope (SEM). The obtained results showed that the mechanical properties of the composites containing MA-g-PP were higher than those of the composites without MA-g-PP. SEM images revealed that the morphological properties of the composites including PP and PLLA were improved. The chemical interactions between PP and PLLA were demonstrated through FTIR results of composites with MA-g-PP.  相似文献   

8.
The effect of two compatibilizers, polypropylene graft maleic anhydride (PPgMA) and ethylene vinyl alcohol (EvOH), on the physical properties of wood polymer composites were studied. The composites were prepared with pine wood and two different impact polypropylene polymers, where the polymers varied according to ethylene content. These compatibilizers, when used together and pre-reacted to create a joint compatiblizer of PPgMA and EvOH, significantly improved control over the repeatability of the physical properties tested, compared to when the compatibilizers were used individually. The impact values were slightly reduced, however the standard deviation of these values showed that the variation in the impact properties were significantly minimized when EvOH was also introduced. It appears that the joint compatiblizer provides better control over the hardness to impact balance of these composite materials and some of these physical properties were improved depending on the ratio between PPgMA and EvOH used, in the joint compatibilizer. Due to the difference in chemistry between PPgMA and EvOH, we expected PPgMA to interact more with the crystalline polypropylene matrix of the impact polymer and the EvOH with the amorphous, rubbery part and yield interesting results.  相似文献   

9.
Mercerization process is very significant because the alkali treatment facilitates reactivity of lignocellulosic fillers, thus allowing better response to chemical modification. In the present study, the effect of mercerization of pine wood on the nucleation ability of polypropylene was investigated by means of differential scanning calorimetry. We discovered that for the composites with wood containing cellulose II, the decrease in the crystal conversion of the polymer matrix and increase in the half-time of crystallization values are significant. It can be concluded that the amount of cellulose II formed upon alkalization of lignocellulosic fillers determines their nucleation ability. To evaluate the transcrystalline effects caused by various woods, which were untreated or treated with sodium hydroxide, the polarized optical microscopy was also performed. The nucleation of polypropylene on the surface of wood was investigated by induction time measurement. It was found that surfaces of the unmodified wood generate epitaxial nucleation, whereas the mercerized wood generates nonepitaxial nucleation. The differences in the type of nucleation suggest that the effectiveness of formation of transcrystalline structures depends on the contribution of cellulose I and cellulose II. Moreover, the presence of epitaxy is not necessary for the appearance of transcrystalline structures. The results showed that the transcrystalline structures appeared in each system, even with wood containing significant contribution of cellulose II. The only difference noted was the change in the nucleation abilities of the wood surface. Results of this study imply the necessity of quantitative determination of the contributions of cellulose I and cellulose II, whose presence determine the type of nucleation and nucleation ability of the filler surface.  相似文献   

10.
The pyrolysis in a hydrogen atmosphere of pine wood and synthetic polymers (polyethylene and polypropylene) mixtures was studied in a rotating autoclave. The effects of reaction temperature, wood/polymers mixture composition and catalysts, on the mixtures conversion into liquids and gases were established and discussed. The used catalysts were pyrrhotite and haematite materials activated by mechanochemical treatment.In the co-liquefaction processes the interaction between fragments of wood and polymers thermal decomposition took place. This results in non-additive increase of the wood/polymers conversion degree by 10–15 wt.% and of the yield of distillate fractions by 14–19 wt.%. Iron ore materials were found catalytically active in the process of hydropyrolysis of wood/polymers mixtures. By using these catalysts a significant increase of the distillable liquids amounts (by 14–21 wt.%) and a sharp decrease of olefins and cycloparaffins content (by approximately two to three times) were observed.  相似文献   

11.
In this study, clay and/or graphite particles have been added in various quantities to polypropylene matrix by melt blending. The morphology and more particularly the dispersion of particles in these composites have been compared by transmission electron microscopy (TEM). Their thermal stability has also been studied by thermogravimetric analysis (TGA). The experimental results reveal that the addition of 5 wt % of graphite particles or clay improves the thermal stability in air of the matrix by about 50 and 90 °C, respectively. In a second step, these blends have been melt‐spun to produce multifilament yarns. The experiments have shown that the addition of graphite particles up to 5 wt % do not reduce the spinnability of the polypropylene, while the incorporation of more than 1 wt % of clay was causing difficulties for the spinning and more particularly for the drawing step. However, a slight improvement of the Young's modulus of the filaments reinforced with 1 wt % of Cloisite®15A is observed when the filaments are drawn up. The flammability of the different blends used as knitted fabrics has finally been evaluated with a mass loss calorimeter at 35 kW/m2. An atypical behavior has been highlighted for all blends and will be discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1185–1195, 2010  相似文献   

12.
Biocomposites comprising a combination of natural fibres and bio-based polymers are good alternatives to those produced from synthetic components in terms of sustainability and environmental issues. However, it is well known that water or aqueous chemical solutions affect natural polymers/fibres more than the respective synthetic components. In this study the effects of water, salt water, acidic and alkali solutions ageing on water uptake, mechanical properties and flammability of natural fibre-reinforced polypropylene (PP) and poly(lactic acid) (PLA) composites were compared. Jute, sisal and wool fibre- reinforced PP and PLA composites were prepared using a novel, patented nonwoven technology followed by the hot press method. The prepared composites were aged in water and chemical solutions for up to 3 week periods. Water absorption, flexural properties and the thermal and flammability performances of the composites were investigated before and after ageing each process. The effect of post-ageing drying on the retention of mechanical and flammability properties has also been studied. A linear relationship between irreversible flexural modulus reduction and water adsorption/desorption was observed. The aqueous chemical solutions caused further but minor effects in terms of moisture sorption and flexural modulus changes. PLA composites were affected more than the respective PP composites, because of their hydrolytic sensitivity. From thermal analytical results, these changes in PP composites could be attributed to ageing effects on fibres, whereas in PLA composite changes related to both those of fibres present and of the polymer. Ageing however, had no adverse effect on the flammability of the composites.  相似文献   

13.
朱德钦  生瑜  童庆松  王真 《应用化学》2014,31(8):885-891
在转矩流变仪中用熔融接枝法制备马来酸酐(MAH)和苯乙烯(St)接枝聚丙烯(PP)-PP-g-(MAH/St)和PP-g-MAH,将其作为聚丙烯/木粉复合材料的相容剂。 FTIR证实MAH和St单体与PP发生接枝反应。 用SEM和DSC等手段考察两种相容剂对PP/木粉复合材料微观形貌和结晶性能的影响,探索了各种PP/木粉复合材料加工和力学性能不同的内在原因。 SEM显示,PP-g-(MAH/St)改性木粉比PP-g-MAH改性木粉在PP基体中分散性更佳,木粉与PP的界面更加模糊,相容性进一步改善。 DSC结果表明,PP-g-(MAH/St)改性体系可增强木粉对PP的异相成核作用,提高结晶温度和结晶度。 复合材料的加工和力学性能测试结果表明,PP-g-(MAH/St)改性效果明显优于PP-g-MAH。 复合材料的熔体质量流动速率随相容剂用量的增加而逐步下降,PP-g-(MAH/St)改性体系拉伸强度和弯曲强度却逐步上升,并在相容剂用量为4.8 g/100 g PP时达到极值。 此时其拉伸强度达40.62 MPa,分别是未改性体系和PP-g-MAH改性体系的1.29和1.17倍;其弯曲强度达45.72 MPa,分别是未改性体系和PP-g-MAH改性体系的1.23和1.59倍;而无缺口冲击强度却在相容剂用量为3.6 g/100 g PP时达到极值13.35 kJ/m2,分别是未改性体系和PP-g-MAH改性体系的1.62倍和1.42倍。  相似文献   

14.
The effect of filler types of mica and talc on the oscillatory shear rheological properties, mechanical performance, and morphology of the chemically coupled polypropylene composites is studied in this work. The Maleic Anhydride grafted Polypropylene (MAPP) was used as an adhesion promoter for coupling mineral particles with the polypropylene matrix. The samples were prepared by a co‐rotating, L/D = 40, 25 mm twin screw extruder. The tensile tests carried out on the injection molded samples showed a reinforcing effect of talc up to 20 wt% on the Polypropylene (PP). The tensile strength of PP‐mica composites showed a slight decrease at all percentages of mica. The effect of chemical coupling by using MAPP on the tensile strength was more pronounced in increasing the tensile strength for PP‐mica than PP‐talc composites. The complex viscosity curve of pure PP and the composites, showed a Newtonian plateau (η0) up to 30 wt% at low frequency terminal zone. By increasing the filler content to 40 and 50 wt%, the complex viscosity at very low shear rates sharply increased and showed yield behavior that can be due to the formation of filler particles networks in the melt. At the optimum amount of coupling agent, a minimum in cross over frequency curve against MAPP content is observed. The optimum amount of coupling agent for PP‐talc composites is about 1.5%, and about 3% for PP‐mica formulations. The analysis of viscosity behavior at power‐law high region, revealed the more shear thinning effect of mica than talc on the PP matrix resin. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

15.
A novel ionic liquid containing phosphorus ([PCMIM]Cl) was synthesized and characterized by FTIR, 1H NMR, 13C NMR and 31P NMR. Moreover, a new intumescent flame retardant (IFR) system, which was composed of [PCMIM]Cl and ammonium polyphosphate (APP), was used to impart flame retardancy and dripping resistance to polypropylene (PP). The flammability and thermal behaviors of intumescent flame‐retarded PP (PP/IFR) composites were evaluated by limiting oxygen index (LOI), UL‐94 test, thermogravimetric analysis (TGA) and cone calorimeter test. It was found that there was an obvious synergistic effect between [PCMIM]Cl and APP. When the weight ratio of [PCMIM]Cl and APP was 1:5 and the total amount of IFR was kept at 30 wt%, LOI value of PP/IFR composite reached 31.8, and V‐0 rating was obtained. Moreover, both the peak heat release rate and the peak mass loss rate of PP/IFR composites decreased significantly relative to PP and PP/APP composite from cone calorimeter analysis. The TGA curves suggested that [PCMIM]Cl had good ability of char formation, and when combined with APP, it could greatly promote the char formation of PP/IFR composites, hence improved the flame retardancy. Additionally, the rheological behaviors and mechanical properties of PP/IFR composites were also investigated, and it was found that [PCMIM]Cl could also serve as an efficient lubricant and compatibilizer between APP and PP, endowing the materials with satisfying processability and mechanical properties. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
In this study, polypropylene (PP)/thermoplastic polyurethanes (TPU) filled with inorganic intumescent flame retardant expanded graphite (EG) was prepared by melt blending in a twin-screw extruder. The thermal stability, fire retardancy, mechanical properties, and fracture morphology of PP/TPU composites with treated and untreated EG were investigated by thermogravimetric analysis, cone calorimeter, and scanning electron microscope. The results showed that both untreated and treated EG can greatly enhance the thermal stability and fire resistance of polymer matrix materials. Compared with untreated EG, treated EG can further improve the flame retardancy of the composites. For example, treated EG can further reduce the heat release rate, total heat release, and CO emissions of the composites in the combustion. Surface treatment of EG could significantly improve elongation at break and impact strength of PP/TPU/EG composites due to its enhanced interfacial adhesion and the good dispersion of EG particles in the polymer matrix.  相似文献   

17.
Based on a volatile-free silica liquid precursor polymer—hyperbranched polyethoxysiloxane (PEOS), an industrial compatible in situ sol–gel process for the preparation of polymer/silica nanocomposites has been developed. It has been shown that in the presence of a catalyst water vapor induced a fast conversion of liquid PEOS to solid silica in polypropylene (PP) melt in a twin-screw microcompounder. Solid state NMR showed that the in situ conversion of PEOS proceeded to a large extent. With small amounts of PEOS this procedure yielded PP/silica composites with particle size less than 100 nm. The particle size increased with the PEOS amount blended with PP. Nevertheless, the particles were observed to be homogeneously dispersed within the polymer matrix. PP/silica composites prepared by in situ sol–gel technology showed improved thermal properties, but almost not affected mechanical properties in comparison with pure PP.  相似文献   

18.
α-Zr phosphate (hereafter referred to as ZrP) based composites were prepared by melt blending in order to improve the flame retardancy properties of polyamide 6 (PA6), polyethylene terephthalate (PET), polypropylene (PP) and ethylene vinyl acetate copolymer (EVA). Different morphologies are distinguishable by electron microscopy: PA6-ZrP seems to be a nanocomposite by Transmission Electron Microscopy (TEM) whereas PET-, PP- and EVA-ZrP blends appear micro-composites by X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM) analyses. ZrP acts as flame retardant in PA6 reducing the total heat evolved and consequently the heat release rate during the combustion measured by cone calorimetry. Moreover, ZrP reduces the flammability of PET and EVA acting in synergistic effect with phosphorous based flame retardants. Indeed, it is showed that it is possible to reduce the amount of phosphorous flame retardant adding ZrP to reach UL94 classification V0 for both polymers.  相似文献   

19.
The thermal degradation and thermal stability of rice husk flour (RHF) filled polypropylene (PP) and high-density polyethylene (HDPE) composites in a nitrogen atmosphere were studied using thermogravimetric analysis. The thermal stability of pure PP and HDPE was found to be higher than that of wood flour (WF) and RHF. As the content of RHF increased, the thermal stability of the composites decreased and the ash content increased. The activation energy of the RHF filled PP composites increased slowly in the initial stage until α=0.3 (30% of thermal degradation region) and thereafter remained almost constant, whereas that of the RHF filled HDPE composites decreased at between 30 and 40 mass% of RHF content. The activation energy of the composites was found to depend on the dispersion and interfacial adhesion of RHF in the PP and HDPE matrix polymers. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

20.
Natural fiber is well‐known reinforcement filler in polymer‐matrix composites. Composite components like organic polymers and natural fibers are natural fire conductors as the natural fiber consists of cellulose, hemicellulose, and lignin, and hence are as highly flammable as wood. Natural fiber reinforced composite materials are progressively being used in a variety of applications where their fire response is a hazardous consideration, for example, in the automotive (transportation) and building‐construction industries. As a result, an awareness of their performance or response during a fire and the use of conventional fire retardants are of great importance, as they are subject to thermal decomposition when exposed to intensive high heat or fire sources. In this review paper, fire flammability is the main concern for cellulosic and non‐cellulosic fiber‐reinforced polymer composites, especially epoxy composites. This paper reviews the literature on the recent developments in flammability studies concerning polymers, epoxy polymers, cellulosic‐fibers, and non‐cellulosic fiber‐reinforced epoxy bio‐composites. The prime objective of this review is to expand the reach of “fire retardants for polymer materials and composites” to the science community, including physicists, chemists, and engineers in order to broaden the range of their applications. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号