首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
陈苏杰  于军胜  文雯  蒋亚东 《物理学报》2011,60(3):37202-037202
采用N, N'-diphenyl-N, N'-bis(1-naphthyl-pheny1)-1, 1'-biphenyl-4, 4'-diamine (NPB):4, 4'-N, N'-dicarbazole-biphenyl (CBP) 掺杂体系为复合空穴传输层,制备了结构为indium-tin oxide (ITO)/NPB:CBP/CBP:bis iridium (acetylacetonate) /2, 9-dimethyl-4, 7-diphenyl-p 关键词: 有机电致发光器件(OLEDs) 复合空穴传输层 NPB:CBP 器件性能  相似文献   

2.
空穴传输层对有机电致发光器件性能的影响   总被引:3,自引:1,他引:2  
袁桃利  张方辉  张微  黄晋 《发光学报》2013,34(11):1457-1461
制备了结构为ITO/MoO3(40 nm)/空穴传输层/CBP:Ir(ppy)2acac(8%)(30 nm)/BCP(10 nm)/Alq3(40 nm)/LiF(1 nm)/Al(100 nm)的器件,其中Ir(ppy)2acac为绿色磷光染料,空穴传输层分别为TAPC(50 nm)、TAPC(40 nm)/TCTA(10 nm)、NPB(50 nm)、NPB(40 nm)/TCTA(10 nm)。通过使用4种不同结构的空穴传输层,对器件的发光性能进行了研究。结果表明,空穴传输层对器件的发光性能有较大影响。在电压为6 V、电流密度为2 mA/cm2的条件下,4种结构的器件的电流效率分别为52.5,67.8,35.6,56.6 cd/A。其原因是TAPC/TCTA及NPB/TCTA能级结构更有利于空穴对发光层的注入而且TAPC拥有较高的空穴迁移率;另外,TAPC及TCTA拥有较高的LUMO和三线态能量,可以有效地将电子和三线态激子束缚在发光层内,增加绿光染料的复合发光几率。所制备的器件均表现出良好的色坐标稳定性。  相似文献   

3.
以聚乙烯基咔唑poly(N-vinylcarbazole)(PVK)旋涂层为空穴传输层,着重研究了PVK层厚度对双层器件氧化铟锡(ITO)/PVK/tris-(8-hydroxyquinoline)aluminum(Alq3)/Mg:Ag/Al器件性能的影响。测试结果表明,当Alq3层厚度一定时(50nm),只有PVK层为适当厚度(18nm)时双层器件才有最优良的器件性能,即最低的起亮电压,最高的发光亮度和效率。同时对比了不同PVK层厚度的PVK/Alq3双层器件之间以及PVK/Alq3与N,N′-bis-(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine(NPB)/Alq3双层器件寿命的差异。测试结果表明,尽管越厚的PVK层对应的PVK/Alq3双层器件发光性能并不是越好,但器件寿命越长。原因是器件Alq3层内形成的Alq3+越少,因此器件稳定性越好;而PVK/Alq3与NPB/Alq3双层器件寿命的差异来自不同空穴传输层的制备工艺和能级结构的不同。  相似文献   

4.
基于PVK∶NPB掺杂体系的有机电致发光器件的性能   总被引:2,自引:2,他引:2       下载免费PDF全文
利用溶液旋涂的方法,通过改变复合功能层中poly(N-vinylcarbazole)(PVK)和N,N′-bis-(1-naph-thyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine(NPB)的质量比,制备结构为indium-tin-oxide(ITO)/PVK:NPB/2,9-dimenthyl-4,7-diphenyl-1,10-phenanthroline(BCP)/Mg:Ag的有机电致发光器件,并对器件的电致发光特性进行了表征。研究结果表明,当复合功能层中PVK和NPB的质量比为1:1时器件性能最好,在该器件的电致光谱中,除了NPB的本征谱峰外,在长波方向还出现了一个位于640nm处的谱峰,这是PVK和NPB产生的电致激基复合物发光,并且随着驱动电压的增加,电致激基复合物的发光强度也相对增强。  相似文献   

5.
用C60为空穴缓冲层的高效率有机电致发光器件   总被引:5,自引:3,他引:2  
以富勒烯C60作为空穴注入缓冲层,在结构为ITO/C60/TPD/Alq3/LiF/Al的器件中,改善了器件的发光效率。研究了C60厚度对器件发光特性的影响。当C60厚度为1.6nm时,器件发光效率最高。在电流密度为100mA/cm^2时,该器件的效率比没有缓冲层的器件提高近一倍。  相似文献   

6.
有机/聚合物白光电致发光器件   总被引:7,自引:3,他引:7  
将聚合物材料作为空穴传输材料,以有机小分子蓝光染料1,1,4,4-四苯基丁二烯,绿光染料8-羟基喹啉铝和黄光染料5,6,11,12-四苯基四苯并作为产生白光所需要的三种色源,制备了有机/聚合物白光电致发光器件。这种器件的设计使聚合物的热电稳定性好的优点与有机小分子材料荧光效率高的优点相结合,拓宽了材料的选择范围,更有利于选择能带匹配的材料体系。器件的开启电压为2.5V左右,发光效率在9V时达到最大1.24lm/W,该电压下的亮度达到1600cd/m^2,器件的最大亮度超过20000cd/m^2(18V),器件最佳色度为(0.319,0.332),这在目前国际上有报道的有机/聚合物白光发光器件中居领先水平。  相似文献   

7.
锁钒  于军胜  邓静  娄双玲  蒋亚东 《光学学报》2007,27(11):2021-2026
研究了不同质量比的聚苯乙烯(PS)三苯基二胺(TPD)复合空穴传输层对有机电致发光器件(OLED)性能的影响。采用此掺杂体系作器件的空穴传输层,利用旋涂工艺制备了结构为indium-tin-oxide(ITO)/polystyrene(PS)∶N,N′-bis(3-methylphenyl)-N,N′-diphenylbenzidine(TPD)/tris-(8-hydroxyquinoline)-aluminium(Alq3)/Mg∶Ag的双层有机电致发光器件。为便于比较,另直接蒸镀TPD薄膜做空穴传输层制备了相似结构的器件。利用飞行时间法对不同PS-TPD质量比例的薄膜的空穴迁移率进行了表征,并对器件的电致发光特性进行了测试。测试结果表明,掺杂薄膜的空穴迁移率比纯TPD膜的低1~2个数量级。当质量比为m(PS)∶m(TPD)=10∶90时,器件具有最高光亮度14280 cd/m2和最高流明效率1.2 l m/W。说明适当质量比PS的引入相对降低了薄膜的空穴迁移率,调节了TPD的空穴传输能力,更有效地平衡了复合区内正负载流子的数目,从而提高了器件的发光亮度和效率。  相似文献   

8.
通过在OLED器件的空穴传输层中掺杂不同比例的SrF2制作出了高效率蓝色磷光OLED器件.这种器件能有效提高蓝色磷光OLED器件的空穴注入与传输特性,降低器件的的工作电压,提高流明效率(19.11m/W)、电流效率(26.9 cd/A)以及亮度(22 220 cd/m2),和未经掺杂的参比器件相比,分别提高了85.4%...  相似文献   

9.
热稳定空穴传输材料的合成及其电致发光器件   总被引:4,自引:1,他引:3  
合成了两种NPB的新衍生物:N,N’-二(1-萘基)-N,N’-二(4-甲基苯基)-1,1’-联苯-4,4’二胺(NTB)和N,N’-二(1-萘基)-N,N’-二(4-叔丁基苯基)-1,1’-联苯-4,4’二胺(NBB)。DSC测得其玻璃态转变温度分别为108℃和129℃,表现出好的热稳定性。紫外光电子能谱测得其电离势均为5.2eV。NTB和NBB固体光致发光光谱的最大发射波长分别位于455nm和460nm。分别以NPB、NTB、NBB作为空穴传输层材料(HTM)制作了结构相同的有机电致发光器件,3种器件发光光谱相同,均为Alq3的绿色发光,器件的起亮电压分别为11,9,8V,在15V工作电压时的亮度分别为1000,1300,1200cd/m2,初步研究了器件的发光特性和稳定性。  相似文献   

10.
空穴注入层对蓝色有机电致发光器件性能的影响   总被引:1,自引:0,他引:1  
以DPVBi为发光层,NPB为空穴传输层,在阳极ITO和NPB之间分别插入不同的空穴注入层CuPc和PEDOT:PSS,制备了两种结构的蓝色有机电致发光器件(OLEDs):ITO/CuPc/NPB/DPVBi/BCP/Alq3/Al和ITO/PEDOT:PSS/NPB/DPVBi/BCP/Alq3/Al,研究了不同空穴注入材料对蓝色OLEDs发光性能的影响,并与没有空穴注入层的器件进行了比较.其中CuPc分别采用旋涂和真空蒸镀两种丁艺,比较了不同成膜工艺对器件发光特性的影响.结果表明:加入空穴注入层的器件比没有空穴注入层器件性能要好,其中插入水溶性CuPc的器件,其发光亮度和效率虽然比蒸镀CuPc器件要低,但比插入PEDOT:PSS 器件发光性能要好.又由于水溶性CuPc采用旋涂工艺成膜,与传统CuPc相比,制备工艺简单,所以为一种不错的空穴注入材料.  相似文献   

11.
通过引入(NPB/MoO3)x/NPB作为空穴传输层,获得了低驱动电压的有机电致发光器件(OLEDs),(NPB/MoO3)x为多层结构(x为0,1和2).通过对比发现,在相同亮度下,x=1对应的器件具有最低的工作电压.这是由于在NPB和MoO3之间产生了电荷转移复合物(charge transfer,CT),这将会降低器件的空穴注入势垒,从而降低其工作电压,文中所研究器件为基于8-羟基喹啉铝(tris(8-hydroxyquino-line)aluminum,Alq3)的绿光器件.与x=0时的普通器件相比,在亮度为1 000 cd·m-2时,x=1时的工作电压降低了 0.8 V.  相似文献   

12.
A new multilayer organic light-emitting device (OLED) is fabricated by inserting kalium chloride (KCl) thin layer (1 nm) into hole transport layer (HTL). It has the configuration of ITO/NPB(15 nm)/KCl(1 nm)/NPB(25 nm)/Alq3(60 nm)/KCl(1 nm)/Al. The electroluminescence (EL) result shows that the performance of the novel device has obviously improvement compared with the normal structure (ITO/NPB(40 nm)/Alq3(60 nm)/KCl(1 nm)/Al). The EL and efficiency are about 1.4 and 1.3 times than that of conventional device. The suggested mechanism is that the KCl layer in N,N′-diphenyl-N,N′-bis(1-napthyl–phenyl)-1,1′-biphenyl-4,4′-diamine (NPB) can block the holes of NPB and then balance the holes and electrons. The better recombination of holes and electrons is beneficial to the enhancing properties of OLED.  相似文献   

13.
The efficiency of organic light-emitting devices (OLEDs) based on N,N'-bis(1-naphthyl)-N,N'-diphenyl-N,1'-biphenyl-4,4'-diamine (NPB) (the hole transport layer) and tris(8-hydroxyquinoline) aluminum (Alq3) (both emission and electron transport layers) is improved remarkably by inserting a LiF interlayer into the hole transport layer. This thin LiF interlayer can effectively influence electrical performance and significantly improve the current efficiency of the device. A device with an optimum LiF layer thickness at the optimum position in NPB exhibits a maximum current efficiency of 5.96 cd/A at 215.79 mA/cm2, which is about 86% higher than that of an ordinary device (without a LiF interlayer, 3.2 cd/A). An explanation can be put forward that LiF in the NPB layer can block holes and balance the recombination of holes and electrons. The results may provide some valuable references for improving OLED current efficiency.  相似文献   

14.
Driving voltage of organic light-emitting diode (OLED) is lowered by employing molybdenum trioxide (MoO3)/N, N'-bis(naphthalene-1-yl)-N,N'-bis(phe-nyl)-benzidine (NPB) multiple quantum well (MQW) structure in hole transport layer. For the device with double quantum well (DQW) structure of ITO/ [MoO3 (2.5 nm)/NPB (20 nm)]2/Alq3(50 nm)/LiF (0.8 nm)/Al (120 nm)], the turn-on voltage is reduced to 2.8 V, which is lowered by 0.4 V compared with that of the control device (without MQW structures), the driving voltage is 5.6 V, which is reduced by 1 V compared with that of the control device at the 1000 cd/m2. In this work, the enhancement of the injection and transport ability for holes could reduce the driving voltage for the device with MQW structure, which is attributed not only to the reducing energy barrier between ITO and NPB, but also to the forming charge transfer complex between MoO3 and NPB induced by the interfacial doping effect of MoO3.  相似文献   

15.
The driving voltage of an organic light-emitting diode(OLED) is lowered by employing molybdenum trioxide(MoO3)/N,N’-bis(naphthalene-1-yl)-N,N’-bis(phe-nyl)-benzidine(NPB) multiple quantum well(MQW) structure in the hole transport layer.For the device with double quantum well(DQW) structure of ITO/[MoO3(2.5 nm)/NPB(20 nm)]2/Alq3(50 nm)/LiF(0.8 nm)/Al(120 nm)],the turn-on voltage is reduced to 2.8 V,which is lowered by 0.4 V compared with that of the control device(without MQW structures),and the driving voltage is 5.6 V,which is reduced by 1 V compared with that of the control device at the 1000 cd/m2.In this work,the enhancement of the injection and transport ability for holes could reduce the driving voltage for the device with MQW structure,which is attributed not only to the reduced energy barrier between ITO and NPB,but also to the forming charge transfer complex between MoO3 and NPB induced by the interfacial doping effect of MoO3.  相似文献   

16.
A new device has been made by inserting thin LiF layer in N,N′-diphenyl-N,N′-bis(1-napthyl–phenyl)-1, 1′-biphenyl-4,4′-diamine (NPB), which has a configuration of ITO/NPB(20 nm)/LiF(0.5 nm)/NPB(20 nm)/Alq3(60 nm)/LiF(0.5 nm)/Al. Compared with normal device, the device inserted LiF layer inside NPB (HTL) can improve its performance. The luminance and efficiency is about 1.4 and 1.3 folds high of the conventional structure, respectively. The suggestion mechanism is that the LiF in the NPB layer can block holes of NPB, and balance the holes and electrons. Consequently, there are more excitons formed to boost the diode’s luminance and efficiency. And it may offer some valuable references for OLED’s structure.  相似文献   

17.
18.
19.
We investigate the effects of (N,N’-diphenyl)-N,N’-bis(1-naphthyl)-1,1’-biphenyl-4,4’-diamine (NPB) buffer layers on charge collection in inverted ZnO/MEH-PPV hybrid devices. The insertion of a 3-nm NPB thin layer enhances the efficiency of charge collection by improving charge transport and reducing the interface energy barrier, resulting in better device performances. S-shaped light J–V curve appears when the thickness of the NPB layer reaches 25 nm, which is induced by the inefficient charge extraction from MEH-PPV to Ag. Capacitance–voltage measurements are performed to further investigate the influence of the NPB layer on charge collection from both simulations and experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号