首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A nonsimilar boundary layer analysis has been presented for the free convection along a vertical plate embedded in a fluid-saturated porous medium in the presence of surface mass transfer and internal heat generation. The transformed conservation laws are solved numerically for the cases of variable wall temperature and variable wall heat flux boundary conditions. Results are presented for the details of the velocity and temperature fields as well as Nusselt number. Received on 13 December 1996  相似文献   

2.
A buoyancy-induced stationary flow with viscous dissipation in a horizontal porous layer is investigated. The lower boundary surface is impermeable and subject to a uniform heat flux. The upper open boundary has a prescribed, linearly varying, temperature distribution. The buoyancy-induced basic velocity profile is parallel and non-uniform. The linear stability of this basic solution is analysed numerically by solving the disturbance equations for oblique rolls arbitrarily oriented with respect to the basic velocity field. The onset conditions of thermal instability are governed by the Rayleigh number associated with the prescribed wall heat flux at the lower boundary, by the horizontal Rayleigh number associated with the imposed temperature gradient on the upper open boundary, and by the Gebhart number associated with the effect of viscous dissipation. The critical value of the Rayleigh number for the onset of the thermal instability is evaluated as a function of the horizontal Rayleigh number and of the Gebhart number. It is shown that the longitudinal rolls, having axis parallel to the basic velocity, are the most unstable in all the cases examined. Moreover, the imposed horizontal temperature gradient tends to stabilise the basic flow, while the viscous dissipation turns out to have a destabilising effect.  相似文献   

3.
This paper investigates the unsteady stagnation-point flow and heat transfer over a moving plate with mass transfer,which is also an exact solution to the unsteady Navier-Stokes(NS)equations.The boundary layer energy equation is solved with the closed form solutions for prescribed wall temperature and prescribed wall heat flux conditions.The wall temperature and heat flux have power dependence on both time and spatial distance.The solution domain,the velocity distribution,the flow field,and the temperature distribution in the fluids are studied for different controlling parameters.These parameters include the Prandtl number,the mass transfer parameter at the wall,the wall moving parameter,the time power index,and the spatial power index.It is found that two solution branches exist for certain combinations of the controlling parameters for the flow and heat transfer problems.The heat transfer solutions are given by the confluent hypergeometric function of the first kind,which can be simplified into the incomplete gamma functions for special conditions.The wall heat flux and temperature profiles show very complicated variation behaviors.The wall heat flux can have multiple poles under certain given controlling parameters,and the temperature can have significant oscillations with overshoot and negative values in the boundary layers.The relationship between the number of poles in the wall heat flux and the number of zero-crossing points is identified.The difference in the results of the prescribed wall temperature case and the prescribed wall heat flux case is analyzed.Results given in this paper provide a rare closed form analytical solution to the entire unsteady NS equations,which can be used as a benchmark problem for numerical code validation.  相似文献   

4.
An analysis is performed for flow and heat transfer of a steady laminar boundary layer flow of an electrically conducting fluid of second grade in a porous medium subject to a transverse uniform magnetic field past a semi-infinite stretching sheet with power-law surface temperature or power-law surface heat flux. The effects of viscous dissipation, internal heat generation of absorption and work done due to deformation are considered in the energy equation. The variations of surface temperature gradient for the prescribed surface temperature case (PST) and surface temperature for the prescribed heat flux case (PHF) with various parameters are tabulated. The asymptotic expansions of the solutions for large Prandtl number are also given for the two heating conditions. It is shown that, when the Eckert number is large enough, the heat flow may transfer from the fluid to the wall rather than from the wall to the fluid when Eckert number is small. A physical explanation is given for this phenomenon.  相似文献   

5.
An analysis is given of the laminar boundary layer over a permeable/porous wall. The porous wall is passive in the sense that no suction or blowing velocity is imposed. To describe the flow inside and above the porous wall a continuum approach is employed based on the Volume-Averaging Method (S. Whitaker The method of volume averaging). With help of an order-of-magnitude analysis the boundary-layer equations are derived. The analysis is constrained by: (a) a low wall permeability; (b) a low Reynolds number for the flow inside the porous wall; (c) a sufficiently high Reynolds number for the freestream flow above the porous wall. Two boundary layers lying on top of each other can be distinguished: the Prandtl boundary layer above the porous wall, and the Brinkman boundary layer inside the porous wall. Based on the analytical solution for the Brinkman boundary layer in combination with the momentum transfer model of Ochoa-Tapia and Whitaker (Int. J. Heat Mass Transfer 38 (1995) 2635). for the interface region, a closed set of equations is derived for the Prandtl boundary layer. For the stream function a power series expansion in the perturbation parameter is adopted, where is proportional to ratio of the Brinkman to the Prandtl boundary-layer thickness. A generalization of the Falkner–Skan equation for boundary-layer flow past a wedge is derived, in which wall permeability is incorporated. Numerical solutions of the Falkner–Skan equation for various wedge angles are presented. Up to the first order in wall permeability causes a positive streamwise velocity at the interface and inside the porous wall, but a wall-normal interface velocity is a second-order effect. Furthermore, wall permeability causes a decrease in the wall shear stress when the freestream flow accelerates, but an increase in the wall shear stress when the freestream flow decelerates. From the latter it follows that separation, as indicated by zero wall shear stress, is delayed to a larger positive pressure gradient.  相似文献   

6.
An analysis is performed to study a laminar boundary layer flow over a porous flat plate with injection or suction imposed at the wall. The basic equations of this problem are reduced to a system of nonlinear ordinary differential equations by means of appropriate transformations. These equations are solved analytically by the optimal homotopy asymptotic method (OHAM), and the solutions are compared with the numerical solution (NS). The effect of uniform suction/injection on the heat transfer and velocity profile is discussed. A constant surface temperature in thermal boundary conditions is used for the horizontal flat plate.  相似文献   

7.
The present study is intended to study heat and mass transfer in a vertical annular cylinder embedded with saturated porous medium. The inner surface of cylinder is maintained at uniform wall temperature and uniform wall concentration. The governing partial differential equations are non-dimensionalised and solved by using finite element method (FEM). The porous medium is discritised using triangular elements with uneven element size. Large number of smaller-sized elements are placed near the walls of the annulus to capture the smallest variation in solution parameters. The results are reported for both aiding and opposing flows. The effects of various non-dimensional numbers such as buoyancy ratio, Lewis number, Rayleigh number, aspect ratio, etc on heat and mass transfer are discussed. The temperature and concentration profiles are presented.  相似文献   

8.
The present paper is concerned with the study of radiation effects on the combined (forced-free) convection flow of an optically dense viscous incompressible fluid over a vertical surface embedded in a fluid saturated porous medium of variable porosity with heat generation or absorption. The effects of radiation heat transfer from a porous wall on convection flow are very important in high temperature processes. The inclusion of radiation effects in the energy equation leads to a highly non-linear partial differential equations which are transformed to a system of ordinary differential equations using non-similarity transformation. These equations are then solved numerically using implicit finite-difference method subject to appropriate boundary and matching conditions. A parametric study of the physical parameters such as the particle diameter-based Reynolds number, the flow based Reynolds number, the Grashof number, the heat generation or absorption co-efficient and radiation parameter is conducted on temperature distribution. The effects of radiation and other physical parameters on the local skin friction and on local Nusselt number are shown graphically. It is interesting to observe that the momentum and thermal boundary layer thickness increases with the radiation and decrease with increase in the Prandtl number.  相似文献   

9.
The momentum and heat transfer characteristics associated with the boundary layer on a continuous moving flat surface in a non-Darcian fluid have been investigated exploiting a local similarity solution procedure. The full boundary layer equations, which describe the effects of convective inertia, solid boundary, and porous inertia in addition to the Darcy flow resistance, were solved using novel transformed variables, deduced from a scale analysis on the momentum and energy conservation equations. Details are provided for the effects of convective inertia and porous inertia on the velocity and temperature profiles. The resulting friction and heat transfer characteristics are found to be substantially different from those of forces convection over a stationary flat plate. Furthermore, useful asymptotic expressions for the local Nusselt number are presented in consideration of possible physical limiting conditions.  相似文献   

10.
The linear thermoconvective instability of the basic parallel flow in a plane and horizontal porous channel is investigated. The boundary walls are assumed to be impermeable and subject to symmetric and uniform heat fluxes. The wall heat fluxes produce either a net heating or a net cooling of the fluid saturated porous medium. A horizontal mass flow rate is externally impressed leading to a stationary basic state with a temperature gradient inclined to the vertical. A region of possibly unstable thermal stratification exists either in the lower half-channel (boundary heating), or in the upper half-channel (boundary cooling). The convective instability of the basic flow is governed by the Rayleigh number and by the Péclet number. In the case of boundary heating, the thermal instability arises when the Rayleigh number exceeds its critical value, that depends on the Péclet number. The change of the critical Rayleigh number as a function of the Péclet number is determined numerically for arbitrary normal modes oblique to the basic flow direction. The most dangerous modes are the longitudinal rolls, with a wave vector perpendicular to the basic velocity. There exists a minimum value of the Péclet number, 19.1971, below which no linear instability is detected.  相似文献   

11.
An analysis is presented to investigate the effect of thermophoresis particle deposition and temperature dependent viscosity on unsteady non-Darcy mixed convective heat and mass transfer of a viscous and incompressible fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform non-Darcian porous medium in order to allow for possible fluid wall suction or injection. The governing partial differential equations of the problem, subjected to their boundary conditions, are solved numerically by applying an efficient solution scheme for local nonsimilarity boundary layer analysis. Numerical calculations are carried out for different values of dimensionless parameters arising in the problem. The results are compared with available ones in the literature and excellent agreement is obtained. An analysis of the obtained results shows that the flow field is influenced appreciably by the chemical reaction and thermophoresis particle deposition.  相似文献   

12.
An analysis is presented to investigate the effects of thermophoresis and variable viscosity on MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the R.K. Gill and shooting methods. Favorable comparison with previously published work is performed. Numerical results for the dimensionless velocity, temperature and concentration profiles as well as for the skin friction, heat and mass transfer and deposition rate are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.  相似文献   

13.
A boundary layer analysis is presented to investigate numerically the effects of radiation,thermophoresis and the dimensionless heat generation or absorption on hydromagnetic flow with heat and mass transfer over a flat surface in a porous medium.The boundary layer equations are transformed to non-linear ordinary differential equations using scaling group of transformations and they are solved numerically by using the fourth order Runge-Kutta method with shooting technique for some values of physical parameters.Comparisons with previously published work are performed and the results are found to be in very good agreement.Many results are obtained and a representative set is displayed graphically to illustrate the influence of the various parameters on the dimensionless velocity,temperature and concentration profiles as well as the local skin-friction coefficient,wall heat transfer,particle deposition rate and wall thermophoretic deposition velocity.The results show that the magnetic field induces acceleration of the flow,rather than deceleration(as in classical magnetohydrodynamics(MHD) boundary layer flow) but to reduce temperature and increase concentration of particles in boundary layer.Also,there is a strong dependency of the concentration in the boundary layer on both the Schmidt number and mass transfer parameter.  相似文献   

14.
Coupled heat transfer between laminar forced convection along and conduction inside a flat plate wall is theoretically studied. The laminar convective boundary layer is analyzed by employing the integral technique. The energy equations for the fluid and the plate wall are combined under the condition of the continuity in the temperature and heat flux at the fluid-solid interface. The analysis results in a simple formal solution. Expressions have been obtained for calculating local Nusselt number, wall heat flux and temperature along the plate, all are functions of the local Brun number, Br x , which is a measure of the ratio of the thermal resistance of the plate to that of the convective boundary layer. The results indicate that for Br x ≥0.15, neglecting the plate resistance will results in an error of more than 5% in Nusselt number. Comparison of the present solution with other previous studies has been made. The solution may be of a considerable theoretical and practical interest. Received on 19 August 1998  相似文献   

15.
The flow of viscoelastic fluids through a porous channel with one impermeable wall is computed. The flow is characterized by a boundary value problem in which the order of the differential equation exceeds the number of boundary conditions. Three solutions are developed: (i) an exact numerical solution, (ii) a perturbation solution for small R, the cross-flow Reynold's number and (iii) an asymptotic solution for large R. The results from exact numerical integration reveal that the solutions for a non-Newtonian fluid are possible only up to a critical value of the viscoelastic fluid parameter, which decreases with an increase in R. It is further demonstrated that the perturbation solution gives acceptable results only if the viscoelastic fluid parameter is also small. Two more related problems are considered: fluid dynamics of a long porous slider, and injection of fluid through one side of a long vertical porous channel. For both the problems, exact numerical and other solutions are derived and appropriate conclusions drawn.  相似文献   

16.
An analysis is presented to investigate the effects of thermophoresis variable viscosity on MHD mixed convective heat and mass transfer of a viscous, incompressible and electrically conducting fluid past a porous wedge in the presence of chemical reaction. The wall of the wedge is embedded in a uniform porous medium in order to allow for possible fluid wall suction or injection. The governing boundary layer equations are written into a dimensionless form by local non-similarity transformations. The transformed coupled nonlinear ordinary differential equations are solved numerically by using the R.K. Gill and shooting methods. Favorable comparison with previously published work is performed. Numerical results for the dimensionless velocity, temperature and concentration profiles are obtained and displayed graphically for pertinent parameters to show interesting aspects of the solution.  相似文献   

17.
Steady and pulsatile flow and heat transfer in a channel lined with two porous layers subject to constant wall heat flux under local thermal non-equilibrium (LTNE) condition is numerically investigated. To do this, a physical boundary condition in the interface of porous media and clear region of the channel is derived. The objective of this work is, first, to assess the effects of local solid-to-fluid heat transfer (a criterion indicating on departure from local thermal equilibrium (LTE) condition), solid-to-fluid thermal conductivity ratio and porous layer thickness on convective heat transfer in steady condition inside a channel partially filled with porous media; second, to examine the impact of pulsatile flow on heat transfer in the same channel. The effects of LTNE condition and thermal conductivity ratio in pulsatile flow are also briefly discussed. It is observed that Nusselt number inside the channel increases when the problem is tending to LTE condition. Therefore, careless consideration of LTE may lead to overestimation of heat transfer. Solid-to-fluid thermal conductivity ratio is also shown to enhance heat transfer in constant porous media thickness. It is also revealed that an increase in the amplitude of pulsation may result in enhancement of Nusselt number, while Nusselt number has a minimum in a certain frequency for each value of amplitude.  相似文献   

18.
The steady natural convection flow on a horizontal cone embedded in a saturated porous medium with non-uniform wall temperature/concentration or heat/mass flux and suction/injection has been investigated. Non-similar solutions have been obtained. The nonlinear coupled differential equations under boundary layer approximations governing the flow have been numerically solved. The Nusselt and Sherwood numbers are found to depend on the buoyancy forces, suction/injection rates, variation of wall temperature/concentration or heat/mass flux, Lewis number and the non-Darcy parameter.  相似文献   

19.
The influence of third grade, partial slip and other thermophysical parameters on the steady flow, heat and mass transfer of viscoelastic third grade fluid past an infinite vertical insulated plate subject to suction across the boundary layer has been investigated. The space occupying the fluid is porous. The momentum equation is characterized by a highly nonlinear boundary value problem in which the order of the differential equation exceeds the number of available boundary conditions. An efficient numerical scheme of midpoint technique with Richardson’s extrapolation is employed to solve the governing system of coupled nonlinear equations of momentum, energy and concentration. Numerical calculations were carried out for different values of various interesting non-dimensional quantities in the slip flow regime with heat and mass transfer and were shown with the aid of figures. The values of the wall shear stress, the local rate of heat and mass transfers were obtained and tabulated. The analysis shows that as the fluid becomes more shear thickening, the momentum boundary layer decreases but the thermal boundary layer increases; the magnetic field strength is found to decrease with an increasing temperature distribution when the porous plate is insulated. The consequences of increasing the permeability parameter and Schmidt number decrease both the momentum and concentration boundary layer thicknesses respectively whereas an increase in the thermal Grashof number gives rise to the thermal boundary layer thickness.  相似文献   

20.
A numerical study of the steady conjugate free convection over a vertical slender, hollow circular cylinder with the inner surface at a constant temperature and embedded in a porous medium is reported. The governing boundary layer equations for the fluid-saturated porous medium over the cylinder along with the one-dimensional heat conduction equation for the cylinder are cast into dimensionless form, by using a non-similarity transformation. The resulting non-similarity equations with their corresponding boundary conditions are solved by using the Keller box method. Emphasis is placed on the effects caused by the wall conduction parameter, p, and calculations have covered a wide range of this parameter. Heat transfer results including the temperature profiles, the interface temperature profiles and the local Nusselt number are presented. Received on 17 November 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号