首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A static-equilibrium problem is solved for an electroelastic transversely isotropic medium with a flat crack of arbitrary shape located in the plane of isotropy. The medium is subjected to symmetric mechanical and electric loads. A relationship is established between the stress intensity factor (SIF) and electric-displacement intensity factor (EDIF) for an infinite piezoceramic body and the SIF for a purely elastic material with a crack of the same shape. This allows us to find the SIF and EDIF for an electroelastic material directly from the corresponding elastic problem, not solving electroelastic problems. As an example, the SIF and EDIF are determined for an elliptical crack in a piezoceramic body assuming linear behavior of the stresses and the normal electric displacement on the crack surface __________ Translated from Prikladnaya Mekhanika, Vol. 41, No. 11, pp. 67–77, November 2005.  相似文献   

2.
The static equilibrium of a transversely isotropic magnetoelectroelastic body with a plane crack of arbitrary shape in the isotropy plane under antisymmetric mechanical loading is studied. The relationships between the stress intensity factors (SIFs) for an infinite magnetoelectroelastic body and the SIFs for a purely elastic body with the same crack and under the same antisymmetric loading are established. This enables the SIFs for a magnetoelectroelastic body to be found directly from the analogous problem of elasticity. As an example of using this result, the SIFs for penny-shaped, elliptic, and parabolic cracks in a magnetoelectroelastic body under antisymmetric mechanical loading are found Translated from Prikladnaya Mekhanika, Vol. 44, No. 10, pp. 37–51, October 2008.  相似文献   

3.
The paper addresses a thermoelectroelastic problem for a piezoelectric body with an arbitrarily shaped plane crack in a plane perpendicular to the polarization axis under a symmetric thermal load. A relationship between the intensity factors for stress (SIF) and electric displacement (EDIF) in an infinite piezoceramic body with a crack under a thermal load and the SIF for a purely elastic body with a crack of the same shape under a mechanical load is established. This makes it possible to find the SIF and EDIF for an electroelastic material from the elastic solution without the need to solve specific problems of thermoelasticity. The SIF and EDIF for a piezoceramic body with an elliptic crack and linear distribution of temperature over the crack surface are found as an example __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 3, pp. 96–108, March 2008.  相似文献   

4.
A new exact and universal conformal mapping is proposed. Using Muskhelishvili's complex potential method, the plane elasticity problem of power function curved cracks is investigated with an arbitrary power of a natural number, and the general solutions of the stress intensity factors (SIFs) for mode I and mode II at the crack tip are obtained under the remotely uniform tensile loads. The present results can be reduced to the well-known solutions when the power of the function takes different natural numbers. Numerical examples are conducted to reveal the effects of the coefficient, the power, and the projected length along the x-axis of the power function curved crack on the SIFs for mode I and mode II.  相似文献   

5.
Electroelastic behavior of a cracked piezoelectric ceramics plate subjected to four cases of combined mechanical-electrical loads is analyzed. The integral transform method is applied to convert the problem involving an impermeable anti-plane crack to dual integral equations. Solving the resulting equations, the explicit analytic expressions for electroelastic field along the crack line and the intensity factors of relevant quantities near the crack tip and the mechanical strain energy release rate are obtained. The known results for an infinite piezoelectric ceramics plane containing an impermeable anti-plane crack are recovered from the present results only if the thickness of the plate h → ∞. Biography: LI Xian-fang (1964-)  相似文献   

6.
闫相桥 《力学学报》2004,36(5):604-610
提出了平面弹性介质中多孔洞多裂纹相互作用问题的一种数值计算方 法. 通过把适于单一裂纹的Bueckner原理扩充到含有多孔洞多裂纹的一般体系,将原问题 分解为承受远处载荷不含裂纹不含孔洞的均匀问题,和在远处不承受载荷但在裂纹面上和孔 洞表面上承受面力的多孔洞多裂纹问题. 于是,以应力强度因子作为参量的问题可以通过考 虑后者(多孔洞多裂纹问题)来解决,而利用提出的杂交位移不连续法,这种多孔 洞多裂纹问题是容易数值求解的. 算例说明该数值方法对分析平面弹性介质中多孔洞多裂纹 相互作用的问题既简单又有效.  相似文献   

7.
Summary A finite crack propagating at constant speed in a functionally graded piezoelectric strip (FGPS) bonded to a homogeneous piezoelectric strip is considered. It is assumed that the electroelastic material properties of the FGPS vary exponentially across the thickness of the strip, and that the bimaterial strip is under combined anti-plane mechanical shear and in-plane electrical loads. The analysis is conducted for the electrically unified crack boundary condition, which includes both the traditional permeable and the impermeable ones. By using the Fourier transform, the problem is reduced to the solution of Fredholm integral equations of the second kind. Numerical results for the stress intensity factor and the crack sliding displacement are presented to show the influences of the crack propagation speed, electric loads, FGPS gradation, crack length, electromechanical coupling coefficient, properties of the bonded homogeneous piezoelectric strip and crack location.  相似文献   

8.
利用杂交位移不连续法研究拉伸载荷作用下矩形板中单边缺陷-边裂纹(半圆孔裂纹和半方孔裂纹)问题,给出了这三种平面弹性裂纹问题的应力强度因子的详细数值解。通过半圆孔裂纹问题和半方孔裂纹问题与单边裂纹问题的应力强度因子的比较,发现半圆孔和半方孔对单边裂纹有屏蔽影响。此外,本文的研究结果表明,杂交位移不连续法用于分析平面弹性有限体中复杂裂纹问题的应力强度因子简单且又准确。  相似文献   

9.
The elastic stress state in a piezoelectric body with an arbitrarily oriented elliptic crack under mechanical and electric loads is analyzed. The solution is obtained using triple Fourier transform and the Fourier-transformed Green’s function for an unbounded piezoelastic body. Solving the problem for the case of a crack lying in the isotropy plane, for which there is an exact solution, demonstrates that the approach is highly efficient. The distribution of the stress intensity factors along the front of a crack in a piezoelectric body under uniform mechanical loading is analyzed numerically for different orientations of the crack __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 2, pp. 39–48, February 2008.  相似文献   

10.
Mixed-mode fracture mechanics analysis of an embedded arbitrarily oriented crack in a two-dimensional functionally graded material using plane elasticity theory is considered. The material properties are assumed to vary exponentially in two planar directions. Then, employing Fourier integral transforms with singular integral equation technique, the problem is solved. The stress intensity factors (SIFs) at the crack tips are calculated under in-plane mechanical loads. Finally, the effects of crack orientation, material non-homogeneity, and other parameters are discussed on the value of SIF in mode I and mode II fracture.  相似文献   

11.
This paper is concerned with the stress intensity factors (SIFs) of cracks emanating from an elliptical hole in an infinite or a finite plate under biaxial loads by using a boundary element method, which consists of the non-singular displacement discontinuity element presented by Crouch and Starfield and the crack-tip displacement discontinuity elements due to the author. In the boundary element implementation the left or the right crack-tip element is placed locally at the corresponding left or right crack tip on top of the constant displacement discontinuity elements that cover the entire crack surface and the other boundaries. A few numerical examples are included to show that the present approach is very efficient and accurate for the calculating the SIFs of crack problems in an infinite or a finite plate. The present numerical results of cracks emanating from an elliptical hole under biaxial loads can reveal the effect of the elliptical aspect ratio and the transverse load on the SIFs.  相似文献   

12.
The paper establishes a relationship between the solutions for cracks located in the isotropy plane of a transversely isotropic piezoceramic medium and opened (without friction) by rigid inclusions and the solutions for cracks in a purely elastic medium. This makes it possible to calculate the stress intensity factor (SIF) for cracks in an electroelastic medium from the SIF for an elastic isotropic material, without the need to solve the electroelastic problem. The use of the approach is exemplified by a penny-shaped crack opened by either a disk-shaped rigid inclusion of constant thickness or a rigid oblate spheroidal inclusion in an electroelastic medium __________ Translated from Prikladnaya Mekhanika, Vol. 44, No. 7, pp. 47–60, July 2008.  相似文献   

13.
研究孔洞与裂纹的相互作用问题,通过把适于单一裂纹的Bueckner原理扩充到含有多孔洞多裂纹的一般体系,将原问题分解为承受远处载荷不含裂纹不含孔洞的均匀问题,和在远处不承受载荷但在裂纹面上和孔洞表面上承受面力的多孔洞多裂纹问题.于是,以应力强度因子作为参量的问题可以通过考虑后者来解决,而利用笔者提出的杂交位移不连续法,这种多孔洞多裂纹问题是容易数值求解的.算例说明该数值方法对分析平面弹性介质中孔洞与裂纹的相互作用既简单又有效.  相似文献   

14.
Using Green’s functions, the extended general displacement solutions of a three-dimensional crack problem in anisotropic electro-magneto-elastic (EME) bimaterials under extended loads are analyzed by the boundary element method. Then, the crack problem is reduced to solving a set of hypersingular integral equations (HIE) coupled with boundary integral equations. The singularity of the extended displacement discontinuities around the crack front terminating at the interface is analyzed by the main-part analysis method of HIE, and the exact analytical solutions of the extended singular stresses and extended stress intensity factors (SIFs) near the crack front in anisotropic EME bimaterials are given. Also, the numerical method of the HIE for a rectangular crack subjected to extended loads is put forward with the extended crack opening dislocation approximated by the product of basic density functions and polynomials. At last, numerical solutions of the extended SIFs of some examples are obtained.  相似文献   

15.
Summary  In this paper, we study a two-dimensional electroelastic problem of an infinite piezoelectric body with two circular piezoelectric inhomogeneities, one of which contains a crack. We formulate the stress intensity factor (SIF) analytically and investigate it numerically. The problem is solved based on Bueckner's principle, and is reduced to a problem of a singular integral equation of the first kind with respect to the distribution function of screw dislocation. The effect of interaction between the two inhomogeneities and the crack on the electroelastic field as well as the control of the SIF by electrical loads is investigated. Received 18 April 2000; accepted for publication 24 October 2000  相似文献   

16.
IntroductionDuetotheintrinsiccouplingcharacteristicsbetweenelectricandelasticbehaviors,thatis,appliedmechanicalloadingproduceselasticdeformation ,aswellaselectricfield ,andconverselyelectricfieldcangiverisetoelasticdeformation ,piezoelectricmaterialshave…  相似文献   

17.
IntroductionPiezoelectric materials have potentials for use in many modern devices and compositestructures. The presence of various defects, such as inclusions, holes, dislocations andcracks, can greatly influence their characteristics and coupled behavio…  相似文献   

18.
刘瑜  李群 《应用力学学报》2004,21(2):138-141
解析地研究了含中心裂纹的压电体,它在无穷远处承受机电载荷,并在裂面上满足由Parton和Kudryavtsev以及Hao和Shen提出的绝对电边界条件。在平面应变假设下,给出其二维精确解,并提供了机械应变能释放率和裂尖能量释放率等数值结果。考虑工业应用范围之内常用的远场载荷时,由绝对电边界条件得出的能量释放率表现出明显的非线性特征及载荷相关性,而不是完全与电场无关,这一结论与Xu和Rajapakse在较小载荷下得到的规律不同。  相似文献   

19.
梯度材料中矩形裂纹的对偶边界元方法分析   总被引:2,自引:0,他引:2  
肖洪天  岳中琦 《力学学报》2008,40(6):840-848
采用对偶边界元方法分析了梯度材料中的矩形裂纹. 该方法基于层状材料基本解,以非裂纹边界的位移和面力以及裂纹面的间断位移作为未知量. 位移边界积分方程的源点配置在非裂纹边界上,面力边界积分方程的源点配置在裂纹面上. 发展了边界积分方程中不同类型奇异积分的数值方法. 借助层状材料基本解,采用分层方法逼近梯度材料夹层沿厚度方向力学参数的变化. 与均匀介质中矩形裂纹的数值解对比,建议方法可以获得高精度的计算结果. 最后,分析了梯度材料中均匀张应力作用下矩形裂纹的应力强度因子,讨论了梯度材料非均匀参数、夹层厚度和裂纹与夹层之间相对位置对应力强度因子的影响.   相似文献   

20.
In this paper, a problem of a crack in an orthotropic strip is studied under plane strain conditions. It is assumed that normal displacements and shear stresses do not act on neither of the boundaries of the strip. Cauchy-type singular integral equation for the crack problem is derived by using the theory of plane elasticity and the Fourier transformation technique. A quadrature collocation approach is adopted for the numerical solutions of the singular integral equation. The effect of relative thickness and mechanical properties of strip on Mode I stress intensity factors (SIFs) are examined under different loading conditions. Some sample results are given for SIFs; also, material orthotropy and geometrical effects are discussed in detail.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号