首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Highly ordered amino-functionalized mesoporous silica thin films have been directly synthesized by co-condensation of tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) in the presence of triblock copolymer Pluronic P123 surfactant species under acidic conditions by sol-gel dip-coating. The effect of the sol aging on thin films organization is systematically studied, and the optimal sol aging time is obtained. The amino-functionalized mesoporous silica thin films exhibit a long-range ordering of 2D hexagonal (p6mm) mesostructure with a large pore size of 8.3 nm, a large Brunauer–Emmett–Teller (BET) specific surface area of 680 m2 g−1 and a large pore volume of 1.06 cm3 g−1 following surfactant extraction as demonstrated by X-ray diffraction (XRD), Transmission electron microscope (TEM), and physical adsorption techniques. Based on BET surface area and weight loss, the surface coverage of amino-groups for the amino-functionalized mesoporous silica thin films is calculated to be 3.2 amino-groups per nm2. Moreover, the functionalized thin films display improved properties for immobilization of cytochrome c in comparison with pure-silica mesoporous thin films.  相似文献   

2.
The design of hybrid mesoporous materials incorporating polymeric assemblies as versatile functional units has become a very fertile research area offering major opportunities for controlling molecular transport through interfaces. However, the creation of such functional materials depends critically on our ability to assemble polymeric units in a predictable manner within mesopores with dimensions comparable to the size of the macromolecular blocks themselves. In this work, we describe for the first time the manipulation of the molecular transport properties of mesoporous silica thin films by the direct infiltration of polyelectrolytes into the inner environment of the 3D porous framework. The hybrid architectures were built up through the infiltration-electrostatic assembly of polyallylamine (PAH) on the mesopore silica walls, and the resulting systems were studied by a combination of experimental techniques including ellipso-porosimetry, cyclic voltammetry and X-ray photoelectron spectroscopy, among others. Our results show that the infiltration-assembly of PAH alters the intrinsic cation-permselective properties of mesoporous silica films, rendering them ion-permeable mesochannels and enabling the unrestricted diffusion of cationic and anionic species through the hybrid interfacial architecture. Contrary to what happens during the electrostatic assembly of PAH on planar silica films (quantitative charge reversal), the surface charge of the mesoporous walls is completely neutralized upon assembling the cationic PAH layer (i.e., no charge reversal occurs). We consider this work to have profound implications not only on the molecular design of multifunctional mesoporous thin films but also on understanding the predominant role of nanoconfinement effects in dictating the functional properties of polymer-inorganic hybrid nanomaterials.  相似文献   

3.
Well-ordered cubic mesoporous silicas SBA-1 functionalized with sulfonic acid groups have been synthesized through in situ oxidation of mercaptopropyl groups with H(2)O(2) via co-condensation of tetraethoxysilane (TEOS) and 3-mercaptopropyltrimethoxysilane (MPTMS) templated by cetyltriethylammonium bromide (CTEABr) under strong acidic conditions. Various synthesis parameters such as the amounts of H(2)O(2) and MPTMS on the structural ordering of the resultant materials were systematically investigated. The materials thus obtained were characterized by a variety of techniques including powder X-ray diffraction (XRD), multinuclear solid-state Nuclear Magnetic Resonance (NMR) spectroscopy, (29)Si{(1)H} 2D HETCOR (heteronuclear correlation) NMR spectroscopy, thermogravimetric analysis (TGA), and nitrogen sorption measurements. By using (13)C CPMAS NMR technique, the status of the incorporated thiol groups and their transformation to sulfonic acid groups can be monitored and, as an extension, to define the optimum conditions to be used for the oxidation reaction to be quantitative. In particular, (29)Si{(1)H} 2D HETCOR NMR revealed that the protons in sulfonic acid groups are in close proximity to the silanol Q(3) species, but not close enough to form a hydrogen bond.  相似文献   

4.
The transport of guest molecules between adjacent pore channels (cross-wall transport) is the limiting factor in the release of guest molecules from SBA-3-like fibers. This specific mode of diffusion is identified by microscopic observation and studied quantitatively in a UV/Vis-monitored release experiment. Analysis of release curves reveals that the external particle surface offers resistance to the guest molecules passing through it (external diffusion barrier). This barrier is native to as-synthesized fibers and can be effectively modified to slow down the release. Extremely effective slowdown is achieved by deposition of a nanometer-thick layer of sodium silicate, that is, the guest molecules are then safely stored in the particles.  相似文献   

5.
Tetraethoxysilane (TEOS) and polyethoxysiloxanes (PEOSs; prepared by the acid‐catalyzed hydrolytic polycondensation of TEOS) were subjected to the sol–gel process in the presence of cetyltrimethylammonium bromide (CTAB), respectively. The PEOSs with Mw 700–26,000, as prepared by sol–gel coating of TEOS and PEOS under various conditions, were used. Uniform and crack‐free thin films of thickness 276–613 nm were prepared by spin‐coating of a PEOS solution containing CTAB. When the coating films were sintered at 400 °C, the combustion of ethoxy groups and CTAB took place to provide porous silica thin films. The structure of the thin films was found to be dependent on the molecular weight of PEOS and the molar ratio of CTAB/Si: lamellar or hexagonal phase was observed for Mw less than 15,000 and for CTAB/Si molar ratios greater than 0.10. Honeycomb structures were observed for Mw less than 5000 and for CTAB/Si molar ratios of 0.15. The honeycomb structure was also observed by atomic force microscopy and transmission electron microscope. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2542–2550, 2006  相似文献   

6.
Single molecule spectroscopy is applied in studies of diffusion and surface adsorption in sol-gel-derived mesoporous silica thin films. Mesoporous films are obtained by spin casting surfactant-templated sols onto glass substrates. Small-angle X-ray diffraction results are consistent with hexagonally ordered mesophases in as-synthesized (i.e., surfactant-containing) films. Upon calcination, a 30% contraction and disordering of these structures occurs. Nile Red is used as a fluorescent probe of both the as-synthesized and calcined films. It is loaded into the samples at subnanomolar levels either prior to spin casting or after calcination. Fluorescence imaging and single-point fluorescence time transients show the dye molecules to be relatively mobile in the as-synthesized samples. In contrast, the molecules appear entrapped at fixed locations in dry calcined films. In calcined films rehydrated under high humidity conditions, the Nile Red molecules again become mobile. Time transients obtained from the as-synthesized and rehydrated samples provide clear evidence for frequent reversible adsorption of the dye to the silica surfaces. Autocorrelations of the time transients provide quantitative data on the mean diffusion coefficients (D = 2.4 x 10(-10) and 2.6 x 10(-10) cm2/s) and mean desorption times (1/k = 25 and 40 s) for the as-synthesized and rehydrated films, respectively. The results prove both water and surfactant play important roles in governing matrix interactions and mass transport.  相似文献   

7.
Silver nanoparticles (NPs) have been synthesized inside mesoporous silica films with chiral nematic structure. Circular dichroism measurements of the silver NP-loaded silica films show NP-based optical activity in the vicinity of the surface plasmon resonance. These materials, with an optical response associated with the chiral assembly of metal NPs, may be useful for developing new sensors.  相似文献   

8.
The replication of amphiphilic systems within an inorganic silica matrix allows the study of the fundamental properties of mesostructural changes, that is, kinetic and structural parameters. Herein we report a detailed study of the transition between cubic bicontinuous mesostructure with space groups Ia$\bar 3The replication of amphiphilic systems within an inorganic silica matrix allows the study of the fundamental properties of mesostructural changes, that is, kinetic and structural parameters. Herein we report a detailed study of the transition between cubic bicontinuous mesostructure with space groups Ia ?3d and Pn ?3m symmetry, which are associated with the minimal G and D surfaces, respectively. The transition may be induced through micellar swelling of the anionic amphiphilic surfactant N-lauroyl alanine by trimethylbenzene. Rich kinetic behaviour is observed and has been exploited to prepare particles with biphasic structures. Transmission electron microscopy evidence indicates that there is epitaxial growth from one mesostructure to the other involving the [111] and [110] orientations of the Ia ?3d and Pn ?3m symmetry structures, respectively. From kinetic studies, we show that the formation of the Ia ?3d mesophase is preceded by a hexagonal phase (plane group p6mm) and an epitaxial relationship has been observed involving the sixfold or ?3 axis orientations of both structures. Our data suggests that the Pn ?3m mesostructure is kinetically stable at low temperatures whereas the Ia ?3d mesostructure is the more stable structure after prolonged periods of hydrothermal treatment. We present evidence from transmission electron microscopy and small-angle X-ray diffractograms and also electron crystallography modelling of the unit cells at particular points in the structural change.  相似文献   

9.
Mesoporous silica with cubic symmetry has attracted interest from researchers for some time. Here, we present the room temperature synthesis of mesoporous silica nanoparticles possessing cubic Pm3?n symmetry with very high molar ratios (>50%) of 3-aminopropyl triethoxysilane. The synthesis is robust allowing, for example, co-condensation of organic dyes without loss of structure. By means of pore expander molecules, the pore size can be enlarged from 2.7 to 5 nm, while particle size decreases. Adding pore expander and co-condensing fluorescent dyes in the same synthesis reduces average particle size further down to 100 nm. After PEGylation, such fluorescent aminated mesoporous silica nanoparticles are spontaneously taken up by cells as demonstrated by fluorescence microscopy.  相似文献   

10.
The 3D-hexagonal mesoporous films are used as templates to grow uniform silver nanoparticles. The grafting of hydrophobic groups at the pore surface, significantly slows down the silver ion diffusion, anchoring small silver clusters in micropores and leading to organized domains of silver particles in mesopores with a narrow size distribution.  相似文献   

11.
A highly ordered cubic mesoporous silica SBA-1 with enhanced stability towards washing with water has been synthesized simply by adding D-fructose as an auxiliary agent during the synthesis.  相似文献   

12.
Mesoporous silica metal oxide (ZnO and CdO) thin films have been used as metal ion precursors to produce the first examples of mesoporous silica metal sulfide (meso-SiO(2) @ZnS, meso-SiO(2) @CdS) or silica metal selenide (meso-SiO(2) @ZnSe, meso-SiO(2) @CdSe) thin films, in which the pore walls are made up of silica and metal sulfide or metal selenide nanoflakes, respectively. A gentle chemical etching with a dilute HF solution of the meso-SiO(2) @CdS (or meso-SiO(2) @CdSe) produces mesoporous cadmium sulfide (meso-CdS) (or cadmium selenide, meso-CdSe). Surface modified meso-CdS displays bright blue photoluminescence upon excitation with a UV light. The mesoporous silica metal oxides are formed as metal oxide nanoislands over the silica walls through a self-assembly process of a mixture of metal nitrate salt-two surfactants-silica source followed by calcination step. The reactions, between the H(2) S (or H(2) Se) gas and solid precursors, have been carried out at room temperature and monitored using spectroscopy and microscopy techniques. It has been found that these reactions are: 1)?taking place through the diffusion of sulfur or selenium species from the top metal oxide layer to the silica metal oxide interface and 2)?slow and can be stopped at any stage to obtain mesoporous silica metal oxide metal sulfide or silica metal oxide metal selenide intermediate thin films.  相似文献   

13.
Transparent thin (ca. 100 nm) films of silica-surfactant mesostructured materials were deposited on borosilicate glass plates and soda-lime glass tubes from aqueous solutions containing tetraethoxysilane, alkyltrimethylammonium chloride, ammonia, and methanol. By calcination in air, the films became mesoporous (BET surface area of 700-900 m2 g-1) with pore diameter 2.0-2.8 nm.  相似文献   

14.
The effect of processing mesoporous silica thin films with supercritical CO2 immediately after casting is investigated, with a goal of using the penetration of CO2 molecules in the tails of fluorinated surfactant templates to tailor the final pore size. Well-ordered films with two-dimensional hexagonal close-packed pore structure are synthesized using a cationic fluorinated surfactant, 1-(3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10,10-heptadecafluorodecyl)pyridinium chloride, as a templating agent. Hexagonal mesopore structures are obtained for both unprocessed films and after processing the cast films in CO2 at constant pressure (69-172 bar) and temperature (25-45 degrees C) for 72 h, followed by traditional heat treatment steps. X-ray diffraction and transmission electron microscopy analysis reveal significant increases in pore size for all CO2-treated thin films (final pore diameter up to 4.22 +/- 0.14 nm) relative to the unprocessed sample (final pore diameter of 2.21 +/- 0.20 nm) before surfactant extraction. Similar pore sizes are obtained with liquid and supercritical fluid treatments over the range of conditions tested. These results demonstrate that combining the tunable solvent strength of compressed and supercritical CO2 with the "CO2-philic" nature of fluorinated tails allows one to use CO2 processing to control the pore size in ordered mesoporous silica films.  相似文献   

15.
The immobilization and electrochemistry of cytochrome c (cyt c) on amino-functionalized mesoporous silica thin films are described. The functionalized silica films with an Im3m cubic phase structure were deposited on conducting ITO substrate by co-condensation of tetraethoxysilane (TEOS) and 3-aminopropyltriethoxysilane (APTES) in the presence of Pluronic F127 under acidic conditions. The high specific surface area, large pore size and functional inner surface of mesoporous silica thin films result in a high cyt c loading, and the cyt c immobilization on this silicate framework is stable. After adsorption of cyt c, the ordered cubic structure of mesoporous silica and the redox activity of immobilized cyt c are retained as demonstrated by X-ray diffraction (XRD), Transmission electron microscope (TEM) and cyclic voltammetry. The redox behavior of the cyt c/silica film-modified ITO electrode is a surface-controlled quasi-reversible process for the experimental conditions used in this work and the electron transfer rate constant is calculated is 1.33 s−1. The ITO electrode modified by cyt c/silica film possesses a high stability; even cyt c retains its redox activity following immobilization for several months. Furthermore, the electrocatalytic activities of the modified ITO electrode to hydrogen peroxide and ascorbic acid have been studied. Since these behaviors are quite pronounced, the modified electrode can be used for detection of hydrogen peroxide and ascorbic acid.  相似文献   

16.
A novel copolymer with fluorescence properties in mesoporous silica SBA-15 was prepared via a combination of surface-initiated reversible addition-fragmentation chain transfer(RAFT) polymerization and "click" chemistry.A sufficient amount of peroxide groups were introduced into mesoporous silica SBA-15 channel pores and were further used to initiate the RAFT polymerization of styrene and 4-vinylbenzyl azide,resulting in SBA-15 supported polystyrene-co-poly(4-vinylbenzyl azide) copolymer(PS-co-PVBA/SBA-15) hybrid material.The samples were characterized by Fourier transform infrared spectroscopy(FT-IR),transmission electron microscopy(TEM),thermogravimetry analysis(TGA),N_2 adsorption-desorption isotherms and X-ray diffraction(XRD),respectively.The results show that the styrene and 4-vinylbenzyl azide had copolymerized inside mesoporous silica SBA-15.Subsequently,Npropargyl-carbazole(PC) was connected to PS-co-PVBA/SBA-15 hybrid material via "click" reaction,resulting in PS-co-PVBC/SBA-15 with carbazole side groups hybrid material.The fluorescence spectrum is dominated by a broad band from 350 nm to 400 nm in narrow region and the maximum peak is 362 nm,indicating the characteristic absorption of the carbazole group of PS-co-PVBC/SBA-15 hybrid material.  相似文献   

17.
18.
Mesoporous thin films functionalized with silylated [small beta]-diketone compounds with symmetry mesostructure dependent on the probe quantity were used as fast uranyl species sensors with high selectivity and sensitivity.  相似文献   

19.
Using tetraethoxysilane and 3-aminopropyltriethoxysilane as the silica sources, amino-functionalized organic/inorganic hybrid mesoporous silica thin films with 2-dimensional hexagonal structure have been synthesized by evaporation induced self-assembly process in the presence of cetyltrimethyl ammonium bromide templates under acid conditions. The Keggin-type molybdphosphoric acid (PMo) is incorporated into the mesoporous silica thin films with amino-groups by wetness impregnation, and the PMo/silica mesoporous composite thin films are obtained. The results of X-ray diffraction (XRD), high resolution transmission electron microscopy (HRTEM), and Fourier transform infrared (FTIR) spectra indicate the PMo molecules maintain Keggin structure and are homogeneously distributed inside mesopores. The composite thin films possess excellent reversible photochromic properties, and change from colorless to blue under ultraviolet irradiation. The photochromic mechanism of the composite thin films is studied by ultraviolet-visible (UV-vis), electron spin resonance (ESR) and X-ray photoelectron spectroscopy (XPS) spectra. It is shown that intervalence charge transfer (IVCT) and ligand-to-metal charge transfer (LMCT) are the main reasons of photochromism. PMo anions interact strongly with amino-groups of the mesoporous suface via hydrogen bond and electrostatic force. After ultraviolet irradiation, the charge transfer occurs by reduction of heteropolyanions accompanying the formation of heteropolyblues with multivalence Mo(VI, V), and the bleaching process of composite thin films is closely related to the presence of oxygen.  相似文献   

20.
Mesoporous aluminophosphate thin films with 3D cubic (Im3m) pore arrangement were synthesized for the first time. Thin films were templated with block copolymer nonionic templates Pluronic F127 and F108 and deposited on a glass substrate by dip-coating. In situ SAXS investigations show the formation of a highly ordered mesostructure upon the dip-coating process, which remains stable up to at least 670 K. A cubic mesostructure was observed also by TEM. Template removal process was monitored by TG and FT-IR. A transition from an amorphous aluminophosphate gel to a well-defined aluminophosphate framework was observed by MAS NMR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号