首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Structural studies of nanocomposites produced by the method combining mechanical preactivation of the mixture comprising 8.1% Cr2O3, 65.9% Fe, and 25% Al by mass and self-propagating high-temperature synthesis (SPHTS) have been carried out by Mössbauer spectroscopy methods. It was found that a Fe/Al/Cr2O3 composite with a small Fe2Al5 intermetallic impurity is produced at the mechanical activation stage. At the SPHTS stage, interaction between the activated components of the mixture results in formation of the Fe0.70?x Cr x Al0.3/Al2O3 (x = 0–0.2) composite.  相似文献   

2.

The results of structural and magnetic investigations of nanogranular Co–Al2O3 films formed from Co3O4/Al thin-film layered structures upon vacuum annealing are reported. The Co3O4/Al films have been obtained by sequential reactive magnetron sputtering of a metallic cobalt target in a medium consisting of the Ar + O2 gas mixture and magnetron sputtering of an aluminum target in the pure argon atmosphere. It is shown that such a technique makes it possible to obtain nanogranular Co–Al2O3 single- and multilayer thin films with a well-controlled size of magnetic grains and their distribution over the film thickness.

  相似文献   

3.
The present work reports the SEM, EPMA and TEM examination of reactions at the interface of Al7075 alloy and a 50/50 wt% mixture of BaAl2Si2O8 + CaAl2Si2O8 feldspars at 850 °C, 1150 °C and 1250 °C. Sintering of the feldspar mixture at 1450 °C caused dissolution of ~1.0 wt% Ca in BaAl2Si2O8 and 0.5 wt% Ba in CaAl2Si2O8. The interaction of the Al alloy with the sintered feldspars shifted the alloy composition to the Al–Si–αBaAl2Si2 and Al–Si–βaAl2Si2 compatibility triangles. The feldspars underwent a series of phase transformations, leading ultimately to the formation of Al2O3.  相似文献   

4.
TiO2 films were loaded on aluminium substrates by dip-coating method. Based on cyclic photocatalytic degradation experiments using benzamide as model molecule, XPS and AFM tests, the deactivating behaviour of the samples was studied. Experiment results show that the samples with less coating times (one to four times) deactivated very quickly, while the samples coated more than five times did not lose activity. Al element was proved to segregate from substrate and diffuse into TiO2 films during calcination and annealing treatment, existing as mixture of Al2O3 and Al(OH)3 at the boundaries among TiO2 particles. During photocatalytic reactions in aqueous phase, the transformation of Al from Al2O3 to Al(OH)3 and the leaching of the latter brought out serious alternation of surface morphology to the samples coated one to three times, on whose surface Ti3+ and Ti2+ centers were also detected after six cycles of photocatalytic reactions, while fresh films and the tested films which did not deactivate possess unique +4 valence Ti. The alteration of surface morphology, together with the change of valence of surface Ti element, resulted in the deactivation encountered in this research.  相似文献   

5.
The method of self-propagating high-temperature synthesis (SHS) is applied to prepare cast oxynitride ceramics using a Fe2O3 + 4Al thermite mixture. The nitrogen-containing components of the mixture were AlN and Si3N4 additives. The synthesis was performed in a reactor at an initial nitrogen pressure of 8MPa. The nitrogen-containing additives are demonstrated to influence the burning rate and combustion limits of the mixtures, as well as the yield and chemical composition of the cast ceramics.  相似文献   

6.
A thick Al2O3/aluminum (Al) structure has been fabricated by oxidation of Al with 68wt% and 98wt% nitric acid (HNO3) aqueous solutions at room temperature. Measurements of the Al2O3 thickness vs. the oxidation time show that reaction and diffusion are the rate-determining steps for oxidation with 68wt% and 98wt% HNO3 solutions, respectively. Observation of transmission electron micrographs shows that the Al2O3 layer formed with 68wt% HNO3 has a structure with cylindrically shaped pores vertically aligned from the Al2O3 surface to the Al2O3/Al interface. Due to the porous structure, diffusion of HNO3 proceeds easily, resulting in the reaction-limited oxidation mechanism. In this case, the Al2O3/Al structure is considerably rough. The Al2O3 layer formed with 98wt% HNO3 solutions, on the other hand, possesses a denser structure without pores, and the Al2O3/Al interface is much smoother, but the thickness of the Al2O3 layer formed on crystalline Al regions is much smaller than that on amorphous Al regions. Due to the relatively uniform Al2O3 thickness, the leakage current density flowing through the Al2O3 layer formed with 68wt% HNO3 is lower than that formed with 98wt% HNO3.  相似文献   

7.
Characterization of the plasma plume produced by laser ablation from Al and Al2O3 targets was carried out on the basis of the line profile analysis of Al(I) (22S) emission. The spatial distribution and density parameters of electrons and Al atoms in the plume were obtained by comparing observed spectral line profiles with a theoretical calculation. The results showed different behavior for the Al and Al2O3 targets. The Al atoms from the Al2O3 target were populated in a smaller region than those from the Al target. PACS 52.38.MF; 52.70.Kz; 52.25.Os  相似文献   

8.
K.C. Chung  F.L. Kwong  Jia Li 《哲学杂志》2013,93(19):1535-1553
The reaction mechanisms between Al and Fe3O4 powders were investigated. Differential thermal analysis revealed that a two-step displacement reaction between Al and Fe3O4 took place during sintering. Initially, the Fe3O4 was converted to amorphous FeO at ~720°C and some of the Al was oxidized to amorphous Al2O3. In the final stage, when the temperature reached ~840°C, crystalline Al2O3 particles were produced in the molten Al–Fe liquid. The effects of cooling rate on the microstructures were studied. When the Al–Fe liquid was furnace-cooled to room temperature, proeutectic Al3Fe plates, plate-like divorced eutectic Al3Fe and Al2O3 particles were in situ formed in the Al(Fe) matrix. While quenching from 700°C, nanometer-sized Al dendrites and Al–Al6Fe eutectic lamellae were produced in the Al matrix. However, when it was rapidly quenched from 900°C, the size of the proeutectic Al3Fe phases was further reduced and Al6Fe nanorods were found in the Al–Al6Fe eutectics. A model was proposed to describe the transformation of the Al–Fe intermetallics during solidification.  相似文献   

9.
Oxide films obtained during anodization of Ti?40% Al sintered powder samples in fluorine-containing electrolytes are investigated. With scanning electron microscopy and X-ray phase analysis, it is demonstrated that an X-ray amorphous nanoporous anodic oxide film is formed on the surface of the powder microparticles under optimal anodization conditions. After annealing at T = 1093 K in air and vacuum (10?2 Pa), the oxide films are revealed to crystallize with its regular porous structure retained. The composition of the polycrystalline anodic-oxide films annealed in air is a mixture involving TiO2 (anatase and rutile) and α- and γ-Al2O3 phases and Ti2O3 and Al2TiO5 traces. The vacuum annealing process makes it possible to identify TiO2, in which anatase is the main phase, α- and γ-Al2O3, and Ti2O3 and TiO traces. However, rutile is not revealed. The presented results indicate that the application of the anodic nanostructuring of Ti?40% Al powders is promising for the obtainment of new photocatalytic active nanomaterials.  相似文献   

10.
The article reports on the effect of the addition of copper in the Al2O3 film on its mechanical and optical properties. The Al–Cu–O films were reactively co-sputtered using DC pulse dual magnetron in a mixture of Ar + O2. One magnetron was equipped with a pure Al target and the second magnetron with a composed Al/Cu target. The amount of Al and Cu in the Al–Cu–O film was controlled by the length of pulse at the Al/Cu target. The Al–Cu–O films with ≤16 at.% Cu were investigated in detail. The addition of Cu in Al2O3 film strongly influences its structure and mechanical properties. It is shown that (1) the structure of Al–Cu–O film gradually varies with increasing Cu content from γ-Al2O3 at 0 at.% Cu through (Al8−2x,Cu3x)O12 nanocrystalline solid solution to CuAl2O4 spinel structure, (2) the Al–Cu–O films with ≥3 at.% Cu exhibit (i) relatively high hardness H increasing from ∼15 GPa to ∼20 GPa, (ii) enhanced elastic recovery We increasing from ∼67% to ∼76% with increasing Cu content from ∼5 to ∼16 at.% Cu and (iii) low values of Young's modulus E* satisfying the ratio H/E* > 0.1 at ≥5 at.% Cu, and (3) highly elastic Al–Cu–O films with H/E* > 0.1 exhibit enhanced resistance to cracking during indentation under high load.  相似文献   

11.
Al-Al2O3 composite coatings with different Al2O3 particle shapes were prepared on Si and Al substrate by cold spray. The powder compositions of metal (Al) and ceramic (Al2O3) having different sizes and agglomerations were varied into ratios of 10:1 wt% and 1:1 wt%. Al2O3 particles were successfully incorporated into the soft metal matrix of Al. It was found that crater formation between the coatings and substrate, which is typical characteristic signature of cold spray could be affected by initial starting Al2O3 particles. In addition, when the large hard particles of fused Al2O3 were employed, the deep and big craters were generated at the interface between coatings and hard substrates. In the case of pure soft metal coating such as Al on hard substrate, it is very hard to get proper adhesion due to lack of crater formation. Therefore, the composite coating would have certain advantages.  相似文献   

12.
承焕生  要小未  杨福家 《物理学报》1993,42(7):1110-1115
本文介绍了用MeV离子散射和沟道效应研究单晶铝表面无定型氧化层与基体之间界面原子结构的方法。报道了Al2O3/Al(100)界面原子结构的实验结果。实验表明,在纯氧气氛围中400℃下生成的氧化铝膜,铝和氧原子浓度比例严格为2与3之比;Al2O3膜和Al(100)基体之间的界面极其陡峭,氧化铝膜下Al(100)基体表面的再构层不大于一个原子层。由实验测量与用Monte Carlo方法计算结果比较,得到再构层原子离开原来晶 关键词:  相似文献   

13.
We study the possibility to grow lanthanum oxide (La2O3) on the surface of lanthanum hexaboride (LaB6) with (100)- and (100/110)-orientation in conditions of thermal annealing, in order to produce a metal-oxide-metal structure. Electron microscopic images, X-ray and optical spectra revealed a La2O3 layer of cubic symmetry. The features of the current-voltage and capacitance-voltage characteristics of the Al/La2O3/(100)LaB6 and Al/La2O3/(100/110)LaB6 structures are analyzed. The electrical conductance mechanism is explained on the basis of space-charge limited current.  相似文献   

14.
《Composite Interfaces》2013,20(5):445-452
The surfaces of ellipsoidal Al2O3 particles with average size of 0.15 μm and the interfaces between the Al2O3 particles and 1070Al were investigated by transmission electron microscopy (TEM) and high resolution electron microscopy (HREM).The results show that the surfaces of Al2O3 particles appear to be polyhedrons consisting of crystal planes with small angle, while every plane of the polyhedrons could be considered as a stepped structure composed of close-packed planes along the close-packed direction. The interfaces of the 0.15 μm Al2O3p/1070Al composite bond well, without any interfacial reaction products. It is proposed that there are several kinds of crystallographic orientation relationships between the aluminum matrix and Al2O3particles due to the polyhedral structure. In our study, such orientation relationships are found to be {110} Al ||{1100} Al2O3 and ?110? Al ||?1126? Al2O3 .  相似文献   

15.
Al/Al2O3 multilayers were deposited on sintered NdFeB magnets to improve the corrosion resistance. The amorphous Al2O3 films were used to periodically interrupt the columnar growth of the Al layers. The structure of the multilayers was investigated by Scanning Electron Microscopy (SEM) and High Resolution Transmission Electron Microscopy (HRTEM). It was found that the columnar structure was effectively inhibited in the multilayers. Subsequent corrosion testing by potentiodynamic polarization in 3.5 wt.% NaCl and neutral salt spray test (NSS) revealed that the Al/Al2O3 multilayers had much better corrosion resistance than the Al single layer. Furthermore, for multilayers with similar thickness, the corrosion resistance was improved as the period decreased.  相似文献   

16.
Al2O3 and Al2O3-Al composite coatings were prepared by plasma spraying. Phase composition of powders and as-sprayed coatings was determined by X-ray diffraction (XRD), while optical microscopy (OM) and scanning electron microscopy (SEM) were employed to investigate the morphology of impacted droplets, polished and fractured surface, and the element distribution in terms of wavelength-dispersive spectrometer (WDS). Mechanical properties including microhardness, adhesion and bending strength, fracture toughness and sliding wear rate were evaluated. The results indicated that the addition of Al into Al2O3 was beneficial to decrease the splashing of impinging droplets and to increase the deposition efficiency. The Al2O3-Al composite coating exhibited homogeneously dispersed pores and the co-sprayed Al particles were considered to be distributed in the splat boundary. Compared with Al2O3 coating, the composite coating showed slightly lower hardness, whereas the coexistence of metal Al phase and Al2O3 ceramic phase effectively improved the toughness, strength and wear resistance of coatings.  相似文献   

17.
Three kinds of coatings, Ni, Cu and Al2O3, were obtained on the surface of short carbon fibers (SCFs). The interface characteristics and mechanical properties of SCFs/Al composites with the various coatings were systematically studied in this paper. The results showed that, compared to non-coating, Ni or Cu coating improved the wettability of SCFs and Al melt. However, the harmful phases Al3Ni or CuAl2 generated in interface zone and Al matrix result in the lower mechanical properties. Al2O3 coating protected the SCFs and prevented the harmful reaction of Al and SCFs. The interface of Al/Al2O3/SCF without any other phase was clean and well bonded, and the Al2O3-coated SCFs/Al composite had the highest mechanical properties. The interfacial indentation and fracture mechanism of all the composites were analyzed in detail.  相似文献   

18.
The uniform and dense Al2O3 and Al2O3/Al coatings were deposited on an orthorhombic Ti2AlNb alloy by filtered arc ion plating. The interfacial reactions of the Al2O3/Ti2AlNb and Al2O3/Al/Ti2AlNb specimens after vacuum annealing at 750 °C were studied. In the Al2O3/Ti2AlNb specimens, the Al2O3 coating decomposed significantly due to reaction between the Al2O3 coating and the O-Ti2AlNb substrate. In the Al2O3/Al/Ti2AlNb specimens, a γ-TiAl layer and an Nb-rich zone came into being by interdiffusion between the Al layer and the O-Ti2AlNb substrate. The γ-TiAl layer is chemically compatible with Al2O3, with no decomposition of Al2O3 being detected. No internal oxidation or oxygen and nitrogen dissolution zone was observed in the O-Ti2AlNb alloy. The Al2O3/Al/Ti2AlNb specimens exhibited excellent oxidation resistance at 750 °C.  相似文献   

19.
HTPB-coated aluminum (Al) nanopowders were prepared by laser-induction complex heating. The characterization of the nanopowders was revealed using transmission electronic microscopy (TEM), high-resolution transmission electronic microscopy (HRTEM), X-ray diffraction analysis (XRD) and Fourier transform infrared (FTIR) spectrometry. Results showed that HTPB-coated Al nanopowders have a core-shell structure with size ranging from 30 to 100 nm and organic HTPB exists in HTPB-coated Al nanopowders. Differential scanning calorimeter (DSC) and thermal gravimeter (TG) analysis of the HTPB-coated Al nanopowders and Al2O3-passivated Al nanopowders stored for 2 years in ambient environment indicated that the reactivity and stability of HTPB-coated Al nanopowders outperform Al2O3-passivated Al nanopowders. These findings demonstrate that HTPB is a suitable surface coating material for Al nanopowders.  相似文献   

20.
Thin Al2O3–ZrO2 eutectic coating was produced by combustion-assisted thermal explosion spraying using a mixture of Al and Zr(NO3)4 powders. The cross-sectional microstructure of the coating shows successively amorphous, cellular, and dendrite structure along the direction perpendicular to the Cu substrate. The formation mechanism of the coating structure was analyzed based on the experimental results, and the morphology of different crystal structure was observed by SEM and TEM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号