首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Atmospheric pressure photoionization mass spectrometric (APPI-MS) study on three types of polyisobutylene derivatives is reported. Two of the polyisobutylenes investigated were polyisobutylene with dihydroxy and diolefinic end-groups derived from aromatic moieties [dicumyl chloride, 1,4-bis(2-chloro-2-propyl)benzene], and the third contained no aromatic moieties with a monohydroxy end-group. All three polyisobutylene derivatives (PIBs) had an average molecular weight (M(n)) of approximately 2000 g/mol, with a polydispersity lower than 1.2. In the positive ion APPI mode, protonated PIB molecules were formed, but the molecular weights obtained were considerably lower than those expected, indicating fragmentation of the PIB chains. In the negative APPI mode, using solvents such as tetrahydrofuran and toluene as dopants, no signal was obtained. However, in chlorinated solvents, such as CCl(4), CHCl(3), and CH(2)Cl(2), in the presence of toluene dopant, PIB adducts with chloride ions were formed with relatively high signal intensity. In the case of CH(2)Cl(2), no dopant (toluene) was necessary to generate chlorinated adduct ions, albeit increasing the toluene concentration in the flow increased the PIB signal intensity. The effect of the toluene concentration on PIB signal intensity was studied and models that include (1) photoionization of toluene, (2) formation of chloride ions from the chlorinated solvents by dissociative electron capture, (3) formation of chlorinated adduct ions and charge recombination reactions between the toluene radical cation, (4) chloride ions, and (5) chlorinated adduct ions are proposed based on the experimental results.  相似文献   

2.
Low molecular weight polyisobutylenes (PIB) with chlorine, olefin and succinic acid end‐groups were studied using direct analysis in real time mass spectrometry (DART‐MS). To facilitate the adduct ion formation under DART conditions, NH4Cl as an auxiliary reagent was deposited onto the PIB surface. It was found that chlorinated adduct ions of olefin and chlorine telechelic PIBs, i.e. [M + Cl]? up to m/z 1100, and the deprotonated polyisobutylene succinic acid [M? H]? were formed as observed in the negative ion mode. In the positive ion mode formation of [M + NH4]+, adduct ions were detected. In the tandem mass (MS/MS) spectra of [M + Cl]?, product ions were absent, suggesting a simple dissociation of the precursor [M + Cl]? into a Cl? ion and a neutral M without fragmentation of the PIB backbones. However, structurally important product ions were produced from the corresponding [M + NH4]+ ions, allowing us to obtain valuable information on the arm‐length distributions of the PIBs containing aromatic initiator moiety. In addition, a model was developed to interpret the oligomer distributions and the number average molecular weights observed in DART‐MS for PIBs and other polymers of low molecular weight. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

3.
We present the synthesis of nonsymmetric α‐ω‐functionalized polyisobutylenes (PIBs) bearing different functional moieties on their chain ends. Thus, on one chain end either, a short tri‐ethylene oxide chain (TEO) or a phosphine oxide ligand is attached, whereas the other chain end is substituted by hydrogen bonding moieties (thymine/2,6‐diaminotriazine). The nonsymmetric PIBs were synthesized via living cationic polymerization using methyl‐styrene epoxide as initiator, followed by quenching reaction with 3‐bromopropyl‐benzene. Subsequent bromide/azide exchange and the use of the azide/alkyne click reaction allowed the synthesis of (a) (α)‐TEO‐(ω)‐thymine‐telechelic PIB ( 7a ), (b) (α)‐triethyleneoxide‐(ω)‐triazine telechelic PIB ( 7b ), and (c) (α)‐phosphinoxide‐(ω)‐thymine‐telechelic PIB ( 13 ) with molecular weights Mn ~ 4000 g mol?1 and low polydispersities (Mw/Mn = 1.3). The chemical identity of the final structures was proven by extensive 1H NMR investigations and matrix‐assisted laser desorption/ionization‐mass spectroscopy (MALDI). The presented method for the first time offers a simple and highly versatile approach toward supramolecular nonsymmetric α‐ω‐functionalized PIB. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

4.
Polyisobutylene (PIB) bearing covalently bound antioxidants is reported. TiCl4‐catalyzed cleavage/alkylation reactions were conducted on poly(isobutylene‐co‐isoprene) (EXXON® Butyl 068; M ¯ n = 3.37 × 105 g/mol, (Ð) = 1.29, and 1.08 mol % isoprene) at ?70 °C in 60/40 hexane/dichloromethane in the presence of 2,6‐di‐tert‐butylphenol (DTP). Resulting PIB M ¯ n s ranged from 30,000 to 85,300 g/mol and number average DTP functionalities (Fn) ranged from 4.3 to 12.0. 1H NMR showed that 25%–40% of the DTP moieties underwent de‐tert‐butylation to form mono‐tert‐butyl phenol moieties. DTP‐functionalized and nonfunctionalized control PIBs were subjected to thermogravimetric analysis in nitrogen and in air. In nitrogen, commercial control PIBs (olefinic end groups) showed delayed onset of thermal degradation (T10 = 380–381 °C) relative to both control PIBs produced by living polymerization (tert‐chloride end groups) and DTP‐functionalized PIBs (T10's all within the range of 366–370 °C). All PIBs showed lower degradation temperatures in air compared to nitrogen. Various control PIBs suffered 90% weight loss in air at temperatures ranging from 372 °C to 410 °C; DTP‐functionalized PIBs did not suffer 90% weight loss in air until 412–414 °C. Oxidative induction time analysis showed that all control PIBs suffered catastrophic degradation within 6 min, and most within 1 min, but DTP‐functionalized PIBs resisted degradation for >100 min. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 1836–1846  相似文献   

5.
The controlled cationic polymerization of isobutylene (IB) initiated by H2O as initiator and TiCl4 as coinitiator was carried out in n‐Hexane/CH2Cl2 (60/40, v/v) mixture at −40 °C in the presence of N,N‐dimethylacetamide (DMA). Polyisobutylene (PIB) with nearly theoretical molecular weight (Mn = 1.0 × 104 g/mol), polydispersity (Mw/Mn) of 1.5 and high content (87.3%) of reactive end groups (tert‐Chlorine and α‐double bond) was obtained. The Friedel‐Crafts alkylation of triphenylamine (TPA) with the above reactive PIB was further conducted at different reactions, such as [TPA]/[PIB], solvent polarity, alkylation temperature, and time. The resultant PIBs with arylamino terminal group were characterized by 1H NMR, UV, and GPC with RI/UV dual detectors. The experimental results indicate that alkylation efficiency (Aeff) increased with increases in [TPA]/[PIB], reaction temperature, and reaction time and with a decrease in solvent polarity. The alkylation efficiency could reach 81.0% at 60/40(v/v) mixture of n‐Hex/CH2Cl2 with [TPA]/[PIB] of 4.49 at 50 °C for 54 h. Interestingly, the synthesis of PIB with arylamino terminal group could also be achieved in one pot by combination of the cationic polymerization of IB initiated by H2O/TiCl4/DMA system with the successive alkylation by further introduction of TPA. Mono‐, di‐ or tri‐alkylation occurred experimentally with different molar ratio of [TPA]/[PIB]. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 936–946, 2008  相似文献   

6.
tert-Chloride-terminated polyisobutylenes (PIB) (1020 ≤ Mn ≤ 6700 g/mol) were dehydrochlorinated nonregiospecifically using basic alumina, or regiospecifically either via potassium tert-butoxide or in situ quenching of quasiliving PIB. Olefin-terminated PIBs were quantitatively ozonized at −78 °C using hexane/methylene chloride/methanol, 62/31/7 (v/v/v) cosolvents, and an ozone generator, employing pure oxygen as source gas. The primary ozonides were reduced using trimethyl phosphite to yield pure PIB methyl ketone from exo-olefin PIB, and a mixture of PIB methyl ketone and PIB aldehyde from mixed olefin-PIB. PIB methyl ketone was oxidized to carboxylate via the haloform reaction; titration revealed near-quantitative functionalization, but the reaction was slow. Tetrahalomethane oxidation was identified as a preferred alternative method, and was conducted using either CCl4 as the reaction solvent, THF as the solvent with CCl4 in reagent amounts, or hexane as the solvent with a phase-transfer catalyst and CCl4 in reagent amounts. The system using hexane, with tetra-n-butyl ammonium chloride as phase-transfer catalyst, showed complete conversion in ∼ 4 h. PIB carboxylic acid was recovered by acidification and isolation. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 3229–3240, 2008  相似文献   

7.
A series of novel block anionomers consisting of polyisobutylene (PIB) and poly(methacrylic acid) (PMAA) segments were prepared and characterized. The specific targets were various molecular weight diblocks (PIB‐b‐PMAA?), triblocks (PMAA?b‐PIB‐b‐PMAA?), and three‐arm star blocks [Φ(PIB‐b‐PMAA?)3] consisting of rubbery PIB blocks with a number‐average degree of polymerization of 50–1000 (number‐average molecular weight = 3000–54,000 g/mol) connected to blocks of PMAA? anions with a number‐average degree of polymerization of 5–20. The overall strategy for the synthesis of these constructs consisted of four steps: (1) synthesis by living cationic polymerization of t‐chloro‐monotelechelic, t‐chloro‐ditelechelic, and t‐chloro‐tritelechelic PIBs; (2) site transformation to obtain PIBs fitted with termini capable of mediating the atom transfer radical polymerization (ATRP) of tert‐butyl methacrylate (tBMA); (3) ATRP of tBMA, and (4) hydrolysis of poly(tert‐butyl methacrylate) to PMAA?. The architectures created and the synthesis steps employed are summarized. Kinetic and model experiments greatly assisted in the development of convenient synthesis methods. The microarchitectures of the various block anionomers were confirmed by spectroscopy and other techniques. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3662–3678, 2002  相似文献   

8.
Polyisobutylenes (PIBs) with different end-groups including chlorine, exo-olefin, hydroxyl, and methyl prepared from aliphatic and aromatic initiators were studied by electrospray ionization mass spectrometry (ESI-MS). Independently of the end-groups, presence or absence of aromatic initiator moiety, these PIB derivatives were capable of forming adduct ions with NO3 and Cl ions, thus allowing the direct characterization of these compounds in the negative ion mode of ESI-MS. To obtain [PIB + NO3] and [PIB + Cl] adduct ions with appreciable intensities, addition of polar solvents such as acetone, 2-propanol, or ethanol to the dichloromethane solution of PIBs was necessary. Furthermore, increasing both the polarity (by increasing the acetone content) and the ion-source temperature give rise to enhanced intensities for both [PIB + NO3] and [PIB + Cl] ions. Energy-dependent collision induced dissociation studies (CID) revealed that increasing the collision voltages resulted in the shift of the apparent molecular masses to higher ones. CID studies also showed that dissociation of the [PIB + Cl] ions requires higher collision energy than that of [PIB + NO3]. In addition, Density Functional Theory calculations were performed to gain insights into the nature of the interactions between the highly non-polar PIB chains and anions NO3 and Cl as well as to determine the zero-point corrected electronic energies for the formation of [PIB + NO3] and [PIB + Cl] adduct ions.
Graphical Abstract ?
  相似文献   

9.
Mono- and di-ended linear and three-arm star allyl-telechelic polyisobutylenes, PIB? A, A? PIB? A and (where A = ? CH2? CH?CH2) have been prepared by a rapid economical one-pot polymerization-functionalization process. The process involves the living polymerization of isobutylene (IB) by mono-, di-, or tri-functional initiating systems, specifically by allphatic and aromatic tert-ester and -ether/TiCl4 combinations, followed by electrophilic functionalization of the living sites with allyl-trimethylsilane (ATMS). Structural characterization by 1H-NMR spectroscopy and end group titration with m-chloroperbenzoic acid (m-CPBA) indicate quantitative end allylation even with relatively slowly initiating systems like DiOAcTMH7/TiCl4. Detailed kinetic analysis of the latter system indicates, unexpetedly, cationation to be rate determining. Quantitative derivatizations of the allyl termini have yielded mono-, di-, and tri-epoxy- and -hydroxy-telechelic PIBs. Strong rubbery networks have been made by curing the epoxy-telechelic PIBs with triethylene tetramine and by reacting the hydroxy-telechelic PIBs with MDI.  相似文献   

10.
Two structurally closely related three‐arm star blocks were synthesized and characterized: tCum(PIB‐b‐PNBD)3 and tCum(PNBD‐b‐PIB)3 [where tCum (tricumyl) stands for the phenyl‐1,3,5‐tris(‐2‐propyl) fragment and PIB and PNBD are polyisobutylene and polynorbornadiene, respectively]. The syntheses were accomplished in two stages: (1) the preparation of the first (or inner) block fitted with appropriate chlorine termini capable of initiating the polymerization of the second (or outer) block with TiCl4 and (2) the mediation of the polymerization of the second block. Therefore, the synthesis of tCum(PIB‐b‐PNBD)3 was effected with tCum(PIB‐Clt)3 [where Clt is tert‐chlorine and number‐average molecular weight (Mn) = 102,000 g/mol] by the use of TiCl4 and 30/70 CH3Cl/CHCl3 solvent mixtures at ?35 °C. PNBD homopolymer contamination formed by chain transfer was removed by selective precipitation. According to gel permeation chromatography, the Mn's of the star blocks were 107,300–109,200 g/mol. NMR spectroscopy (750 MHz) was used to determine structures and molecular weights. Differential scanning calorimetry (DSC) indicated two glass‐transition temperatures (Tg's), one each for the PIB (?65 °C) and PNBD (232 °C) phases. Thermogravimetric analysis thermograms showed 5% weight losses at 293 °C in air and at 352 °C in N2. The synthesis of tCum(PNBD‐b‐PIB)3 was achieved by the initiation of isobutylene polymerization with tCum(PNBD‐Clsec)3 (where Clsec is sec‐chlorine and Mn = 2900 g/mol) by the use of TiCl4 in CH3Cl at ?60 °C. DSC for this star block (Mn = 14,200 g/mol) also showed two Tg's, that is, at ?67 and 228 °C for the PIB and PNBD segments, respectively. It is of interest that the Clsec terminus of PNBD, , readily initiated isobutylene polymerization. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 740–751, 2003  相似文献   

11.
Various novel block cationomers consisting of polyisobutylene (PIB) and poly[2‐(dimethylamino)ethyl methacrylate] (PDMAEMA) segments were synthesized and characterized. The specific targets were various molecular weight diblocks (PIB‐b‐PDMAEMA+) and triblocks (PDMAEMA+b‐PIB‐b‐PDMAEMA+), with the PIB blocks in the DPn = 50–200 range (number‐average molecular weight = 3,000–9000 g/mol) connected to blocks of PDMAEMA+ cations in the DPn = 5–20 range (where DP is the number‐average degree of polymerization). The overall synthetic strategy for the preparation of these block cationomers had four steps: (1) synthesis by living cationic polymerization of mono‐ and diallyltelechelic polyisobutylenes, (2) end‐group transformation to obtain PIBs fitted with termini capable of mediating the atom transfer radical polymerization (ATRP) of DMAEMA, (3) ATRP of DMAEMA, and (4) quaternization of PDMAEMA to PDMAEMA +I? by CH3I. Scheme 1 shows the microarchitecture and outlines the synthesis route. Kinetic and model experiments provided guidance for developing convenient synthesis methods. The microarchitecture of PIB–PDMAEMA di‐ and triblocks and the corresponding block cationomers were confirmed by 1H NMR and FTIR spectroscopy and solubility studies. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 3679–3691, 2002  相似文献   

12.
吴一弦 《高分子科学》2011,29(3):360-367
The selective cationic polymerization of isobutylene(IB)initiated by a BF3·cyclohexanol(CL)complex was carried out from the mixed C4 fraction feed containing the 4C saturated and unsaturated hydrocarbons at-20℃.The effects of CL concentration,BF3 concentration,solvent for preparing BF3·CL complex and polymerization time on the chemical structure of end groups,number-average molecular weight(Mn)and molecular weight distribution(MWD,Mw/Mn)of the resulting polymers were investigated.The experimental results indicate that the BF3·CL complex initiating system exhibited an extremely high selectivity toward the cationic polymerization of IB in the mixed C4 fraction feed and low molecular weight(Mn=900-3600)polyisobutylenes(PIBs)with large proportion of exo-double bond end groups were obtained.The exo-double bond content in PIB chain ends increased by increasing CL concentration or by decreasing solvent polarity in initiating system,BF3 concentration and polymerization time.The Mn and MWD of the resulting PIBs were dependent on the concentrations of CL and BF3.Highly reactive PIBs with around 90 mol%of exo-double bonds were successfully synthesized by the selective polymerization of IB from the mixed C4 fraction feed,providing a potentially practical process for its simplicity and low costs.  相似文献   

13.
吴一弦 《高分子科学》2013,31(8):1139-1147
A novel simple but effective initiating system of H2O/AlCl3 /veratrole (VE) has been developed to synthesize high molecular weight polyisobutylene (PIB) at elevated temperatures via cationic polymerization of isobutylene (IB) in solvent mixture of hexane/methylene dichloride (n-Hex/CH2Cl2 = 2/1, V/V). VE played very important roles in decreasing cationicity of the growing chain ends, suppressing side reactions of chain transfer and termination during polymerization, leading to production of high molecular weight PIBs. PIBs with high yields, having very high weight-average molecular weight (Mw ) of 1117000 and 370000 g/mol could be synthesized with H2O/AlCl3 /VE initiating system at VE concentration of 5.4 mmol/L at 80 and 60℃ respectively. Molecular weight of PIB increased remarkably with increasing VE concentration. The reaction order with respect to VE concentration was determined to be 3.52 via FTIR spectroscopy in combination with a diamond tipped attenuated total reflectance (ATR) immersion probe. The negative reaction order of VE was consistent with its retarding effect on IB polymerization by interacting with the propagating species. Molecular weight of PIB decreased with increasing polymerization temperature. The activation energy for polymerization degree (EDP ) could be determined to be around 23 kJ/mol when VE concentration was 5.4 mmol/L or 6.4 mmol/L.  相似文献   

14.
The synthesis and melt rheology of supramolecular poly(isobutylene) polymers bearing statistically distributed hydrogen‐bonding moieties is reported, aiming at understanding the formation of the underlying supramolecular networks for self‐healing polymers. Two different hydrogen bonds were incorporated into a poly(isobutylene) (PIB) copolymer, one based on a (weak) pyridinium/pyridine interaction, the other based on a (stronger) 2,6‐diaminotriazine/thymine interaction. A direct copolymerization based on living cationic polymerization of isobutene and the comonomers 1 , 2 , and 4 in amounts of 1 mol % lead to the copolymers PIB‐ 1 , PIB‐ 2 , and PIB‐ 4 with a content of ~1 mol % of comonomer and molecular weights ranging from ~2000 to 19,000 g mol?1 (Mw/Mn ~ 1.2–1.5). Subsequent azide/alkyne “click” chemistry enabled the attachment of 2,6‐diaminotriazine‐ and thymine‐moieties to yield the copolymers PIB‐ 5 , PIB‐ 6 , and PIB‐ 7 . Proof of the statistical incorporation of ~1 mol % of hydrogen‐bonding moieties was achieved by 1H NMR spectroscopy and matrix‐assisted laser desorption ionization measurements. The true presence of a supramolecular network in PIB‐ 1 (pyridinium/pyridine interaction) as well as with 1/1 blends of PIBs interacting via the 2,6‐diaminotriazine/thymine interaction (PIB‐ 5 /PIB‐ 6 ) was proven via the increasing plateau modulus with increasing molecular weights (5.5k, 9.9k, 12.4k, 16k, and 19k). Dynamics of the hydrogen bonds in the melt state was investigated by determining the effective cluster lifetime ( τ ) observing a clear difference in the (weaker) pyridinium/pyridine interaction ( τ ~ 1 s) to the 2,6‐ (stronger) diamintriazine/thymine interaction ( τ ~ 100 s). The so‐generated materials will be useful as a basis for self‐healing polymers, as dynamics plays a major role in such polymers. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

15.
Telechelic poly(ether ketone)s (PEKs) and polyisobutylenes (PIBs) were combined to form PIB? PEK? PIB triblock copolymers and (PIB? PEK)n multiblock copolymers via the formation of urea linkages. Monovalent and bivalent amino telechelic PIBs were prepared quantitatively from allyl telechelic PIBs by a newly developed reaction sequence featuring nucleophilic reaction steps. Telechelic PEK? NCO polymers were prepared from the corresponding amino telechelic PEKs via a reaction with diphosgene. The highly reactive PEK? NCO and PIB? NH2 telechelics formed PEK? PIB block copolymers only quantitatively when appropriately reactive primary amino groups were present on the amino telechelic PIBs. The obtained block copolymers were microphase‐separated and featured mostly lamellar structures, as determined by small‐angle X‐ray scattering (SAXS). Temperature‐dependent SAXS measurements revealed ordered polymers in the melt up to 210 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 188–202, 2005  相似文献   

16.
1H-NMR spectra of various telechelic (i.e., ~ CH2C(CH3)2Cl, ~ CH2C(CH3)?CH2, ~ CH?C(CH3)2, and ~ CH2CH(CH3)CH2OH capped) polyisobutylenes (PIB) have been analyzed. The products were prepared by living carbocationic polymerization followed by end-group functionalization. Shielding and deshielding effects strongly influence the 1H-NMR spectra of these products. Inductive effects (chlorine-ended PIBs), magnetically anisotropic end-groups (olefin groups and phenyl rings), allylic coupling (olefin end-groups), chirality (hydroxyl end-groups), and the interaction of these effects on the 1H-NMR spectra are discussed. Numerous heretofore unidentified resonances have been assigned and better insight into the detailed structure of end-functionalized PIBs has been obtained. © 1994 John Wiley & Sons, Inc.  相似文献   

17.
Multiarm star‐branched polymers based on poly(styrene‐b‐isobutylene) (PS‐PIB) block copolymer arms were synthesized under controlled/living cationic polymerization conditions using the 2‐chloro‐2‐propylbenzene (CCl)/TiCl4/pyridine (Py) initiating system and divinylbenzene (DVB) as gel‐core‐forming comonomer. To optimize the timing of isobutylene (IB) addition to living PS⊕, the kinetics of styrene (St) polymerization at −80°C were measured in both 60 : 40 (v : v) methyl cyclohexane (MCHx) : MeCl and 60 : 40 hexane : MeCl cosolvents. For either cosolvent system, it was found that the polymerizations followed first‐order kinetics with respect to the monomer and the number of actively growing chains remained invariant. The rate of polymerization was slower in MCHx : MeCl (kapp = 2.5 × 10−3 s−1) compared with hexane : MeCl (kapp = 5.6 × 10−3 s−1) ([CCl]o = [TiCl4]/15 = 3.64 × 10−3M; [Py] = 4 × 10−3M; [St]o = 0.35M). Intermolecular alkylation reactions were observed at [St]o = 0.93M but could be suppressed by avoiding very high St conversion and by setting [St]o ≤ 0.35M. For St polymerization, kapp = 1.1 × 10−3 s−1 ([CCl]o = [TiCl4]/15 = 1.82 × 10−3M; [Py] = 4 × 10−3M; [St]o = 0.35M); this was significantly higher than that observed for IB polymerization (kapp = 3.0 × 10−4 s−1; [CCl]o = [Py] = [TiCl4]/15 = 1.86 × 10−3M; [IB]o = 1.0M). Blocking efficiencies were higher in hexane : MeCl compared with MCHx : MeCl cosolvent system. Star formation was faster with PS‐PIB arms compared with PIB homopolymer arms under similar conditions. Using [DVB] = 5.6 × 10−2M = 10 times chain end concentration, 92% of PS‐PIB arms (Mn,PS = 2600 and Mn,PIB = 13,400 g/mol) were linked within 1 h at −80°C with negligible star–star coupling. It was difficult to achieve complete linking of all the arms prior to the onset of star–star coupling. Apparently, the presence of the St block allows the PS‐PIB block copolymer arms to be incorporated into growing star polymers by an additional mechanism, namely, electrophilic aromatic substitution (EAS), which leads to increased rates of star formation and greater tendency toward star–star coupling. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 1629–1641, 1999  相似文献   

18.
Novel rubbery wound closures containing various proportions and molecular weights of polyisobutylene (PIB) and poly(2‐octyl cyanoacrylate) [P(OctCA)] for potential clinical use were designed, synthesized, characterized, and tested. Homo‐networks were prepared by crosslinking 3‐arm star‐shaped PIBs fitted with terminal cyanoacrylate groups, [Ø(PIB‐CA)3], and co‐networks by copolymerizing Ø(PIB‐CA)3 with OctCA using N‐dimethyl‐p‐toluidine (DMT). Neat Ø(PIB‐CA)3, and Ø(PIB‐CA)3/OctCA blends, upon contact with initiator, polymerize within seconds to optically transparent strong rubbery co‐networks, Ø(PIB‐CA)3co‐P(OctCA). Homo‐ and co‐network formation was demonstrated by sol/gel studies, and structures and properties were characterized by a battery of techniques. The Tg of P(OctCA) is 58 °C by DSC, and 75 °C by DMTA. Co‐networks comprising 25% Ø(PIB‐CA)3 (Mn = 2400 g/mol) and 75% P(OctCA) are stronger and more extensible than skin. Short and long term creep studies show co‐networks exhibit high dimensional stability and <6% creep strain at high loading. When deposited on porcine skin co‐networks yield hermetically‐adhering clear rubbery coatings. Strips of porcine skin coated with co‐networks could be stretched and twisted without compromising membrane integrity. The co‐network is nontoxic to L‐929 mouse fibroblasts. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1640–1651  相似文献   

19.
The synthesis of novel arborescent (arb; randomly branched, “tree‐like,” and often called “hyperbranched”) block copolymers comprised of rubbery polyisobutylene (PIB) and glassy polystyrene (PSt) blocks (arb‐PIB‐b‐PSt) is described. The syntheses were accomplished by the use of arb‐PIB macroinitiators (prepared by the use of 4‐(2‐methoxyisopropyl) styrene inimer) in conjunction with titanium tetrachloride (TiCl4). The effect of reaction conditions on blocking of St from arb‐PIB was investigated. Purified block copolymers were characterized by 1H NMR spectroscopy and Size Exclusion Chromatography (SEC). arb‐PIB‐b‐PSt with 11.7–33.8 wt % PSt and Mn = 468,800–652,900 g/mol displayed thermoplastic elastomeric properties with 3.6–8.7 MPa tensile strength and 950–1830% elongation. Samples with 26.8–33.8 wt % PSt were further characterized by Atomic Force Microscopy (AFM), which showed phase‐separated mixed spherical/cylindrical/lamellar PSt phases irregularly distributed within the continuous PIB phase. Dynamic Mechanical Thermal Analysis (DMTA) and solvent swelling of arb‐PIB‐b‐PSt revealed unique characteristics, in comparison with a semicommercial PSt‐b‐PIB‐b‐PSt block copolymer. The number of aromatic branching points of the arb‐PIB macroinitiator, determined by selective destruction of the linking sites, agreed well with that calculated from equilibrium swelling data of arb‐PIB‐b‐PSt. This method for the quantitative determination of branching sites might be generally applicable for arborescent polymers. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1811–1826, 2005  相似文献   

20.
A series of polymerized ionic liquid crystals (PILCs) bearing fluorinated cholesteryl mesogens were synthesized in this work, which include polymerized imidazolium bromides (PIBs) and polymerized imidazolium hexafluorophosphates (PIHs). The PIBs were synthesized using alkyl bromine‐containing polysiloxanes and 1‐butyl‐1H‐imidazole, and the PIHs were synthesized by anion metathesis reaction using the corresponding PIBs and KPF6. The chemical structures, liquid crystalline (LC) properties, and electrorheological (ER) effect of these PILCs were characterized by use of various experimental techniques. All the PILCs showed smectic A mesophase on heating and cooling cycles. The smectic layer structure of these PILCs are originated from the rigid fluorinated cholesteryl mesogens and the flexible moieties in the LC phase, but the ion pairs (imidazolium cations–PF6?, Im+–PF6?; or imidazolium cations–Br?, Im+–Br?) can disperse in the polysiloxane matrix and expand the d‐spacing in the smectic layers. The PIHs show lower Tg and Ti than the corresponding precursor PIBs, which is due to the larger ion volume of Im+–PF6? for PIHs than that of Im+–Br? for PIBs. A series of 40 V% ER fluids were prepared by mixing the PILCs with polydimethylsiloxane (PDMS), and the ER behaviors were studied. All the PILC/PDMS fluids showed ER effect, and the PIH/PDMS fluids show a little greater ER effect than the PIB/PDMS fluids. The PILC droplets in the ER fluids become deformed owing to both the orientation of fluorinated cholesteryl mesogens and the suppression of ionic migration when a DC electric field was applied, resulting in the occurrence of ER effect. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号