首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sensitive rapid resolution liquid chromatography-tandem mass spectrometry (RRLC-MS/MS) method, combined with solid-phase extraction, ultrasonic extraction and silica gel cartridge cleanup, was developed for 28 steroids including 4 estrogens (estrone (E1), 17β-estradiol (E2), 17α-ethynyl estradiol (EE2), diethylstilbestrol (DES)), 14 androgens (androsta-1,4-diene-3,17-dione (ADD), 17α-trenbolone, 17β-trenbolone, 4-androstene-3,17-dione, 19-nortestoserone, 17β-boldenone, 17α-boldenone, testosterone (T), epi-androsterone (EADR), methyltestosterone (MT), 4-hydroxy-androst-4-ene-17-dione (4-OHA), 5α-dihydrotestosterone (5α-DHT), androsterone (ADR), stanozolol (S)), 5 progestagens (progesterone (P), ethynyl testosterone (ET), 19-norethindrone, norgestrel, medroxyprogesterone (MP)), and 5 glucocorticoids (cortisol, cortisone, prednisone, prednisolone, dexamethasone) in surface water, wastewater and sludge samples. The recoveries of surface water, influents, effluents and sludge samples were 90.6-119.0% (except 5α-DHT was 143%), 44.0-200%, 60.7-123% and 62.6-138%, respectively. The method detection limits for the 28 analytes in surface water, influents, effluents and freeze-dried sludge samples were 0.01-0.24 ng/L, 0.02-1.44 ng/L, 0.01-0.49 ng/L and 0.08-2.06 ng/g, respectively. This method was applied in the determination of the residual steroidal hormones in two surface water of Danshui River, 12 wastewater and 8 sludge samples from two wastewater treatment plants (Meihu and Huiyang WWTPs) in Guangdong (China). Ten analytes were detected in surface water samples with concentrations ranging between 0.4 ng/L (17β-boldenone) and 55.3 ng/L (5α-DHT); twenty analytes in the wastewater samples with concentrations ranging between 0.3 ng/L (P) and 621 ng/L (5α-DHT); and 12 analytes in the sludge samples with concentrations ranging between 1.6 ng/g (E1) and 372 ng/g (EADR).  相似文献   

2.
For over a decade there has been an intensive debate on the possible natural origin of boldenone (androst-1,4-diene-17beta-ol-3-one, 17beta-boldenone) in calf urine and several alternative markers to discriminate between endogenously formed boldenone and exogenously administered boldenone have been suggested. The currently approved method for proving illegal administration of beta-boldenone(ester) is the detection of beta-boldenone conjugates. In the presented method the sulphate, glucuronide and free fractions are separated from each other during cleanup on a SAX column to be able to determine the conjugated status of the boldenone metabolites. The sulphate and glucuronide fractions are submitted to hydrolysis and all three fractions are further cleaned up on a combination of C18/NH2 solid-phase extraction (SPE) columns. Chromatographic separation of the boldenone metabolites was achieved with a Waters Acquity UPLC instrument using a Sapphire C18 (1.7 microm; 2x50 mm) column within 5 min. Detection of the analytes was achieved by electrospray ionisation tandem mass spectrometry. The decision limits of this method, validated according to Commission Decision 2002/657/EC, were 0.08 ng mL(-1) for androsta-1,4-diene-3,17-dione, 0.13 ng mL(-1) for androst-4-ene-3,17-dione, 0.11 ng mL(-1) for 17alpha-boldenone, 0.07 ng mL(-1) for 17beta-boldenone, 0.24 ng mL(-1) for 5beta-androst-1-en-17beta-ol-3-one and 0.58 ng mL(-1) for 6beta-hydroxy-17beta-boldenone. Because of the fractionation approach used in this method there is no need for conjugated reference standards which often are not available. The disadvantage of needing three analytical runs to determine the conjugated status of each of the metabolites was overcome by using fast chromatography.  相似文献   

3.
In September 2005, our laboratory detected the presence of 4-androstene-3,17-dione and androsterone in a standard steroid screen of a post-race gelding urine sample received from an overseas authority. All other urine samples from the same batch tested negative. Subsequent gas chromatography/mass spectrometry (GC/MS) confirmatory analyses, however, repeatedly failed to detect any amount of 4-androstene-3,17-dione and androsterone in the suspicious sample. On the other hand, identical results were obtained when the initial GC/MS screening method was repeated on the suspicious sample as well as on the other samples of the same batch, showing the presence of 4-androstene-3,17-dione and androsterone only in the suspicious sample. These unusual and contradictory findings between the screening and confirmatory procedures were investigated, leading to the unequivocal conclusion that the 4-androstene-3,17-dione and androsterone observed during screening were artefacts from the internal standards, [16,16,17-d3]-testosterone and [16,16,17-d3]-5alpha-androstane-3alpha,17beta-diol. The two deuterated internal standards were thought to have undergone first an enzymatic oxidation of the 17beta-hydroxyl group to a 17-keto function by the enzyme 17beta-hydroxysteroid dehydrogenase; complete deuterium-hydrogen exchange at C16 during the methanolysis deconjugation step would then produce the two artefacts. The findings from this study highlight the potential problem of using internal standards in qualitative confirmatory analyses, which may lead to undesirable false positive results.  相似文献   

4.
The effects of various parameters, i.e. extraction pressure, temperature, time, and modifier on the efficiency of extraction were investigated using an analytical-scale supercritical fluid extraction system. An optimal set of conditions for the extraction and determination by gas chromatography-mass spectrometry of trimethylsilyl derivatives of 4-androstene-3,17-dione, 1,4-androstadiene-3,17-dione, nandrolone, and testosterone in nutritional supplements was developed. The optimum amount of creatine supplement was 1 g, while the optimum pressure and temperature were determined to be 35 MPa and 80 °C, respectively. The optimum dynamic extraction time was 45 min. The limit of detection (LOD) of the investigated compounds ranged from 5 to 25 ng · g−1 of supplement, while recoveries ranged from 76.1 to 86.6%. Correspondence: Petra Mikulcikova, Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, nám. Cs. Legií 565, CZ 532 10 Pardubice, Czech Republic  相似文献   

5.
For the detection of anabolic steroid residues in bovine urine, a highly sensitive liquid chromatographic/electrospray ionization tandem mass spectrometric (LC/ESI-MS/MS) method was developed using both positive and negative ionization. For four compounds the ESI mode was not sensitive enough and gas chromatographic/mass spectrometric GC/MS detection was therefore still necessary as a complementary method. The sample clean-up consisted of solid-phase extraction (SPE) on a C(18) column followed by enzymatic hydrolysis and a second solid-phase extraction on a combination of a C(18) and a NH(2) column. After this last SPE clean-up, the eluate was split into two equal aliquots. One aliquot was further purified and after derivatization used for GC/MS analysis. The other aliquot was analyzed with LC/MS/MS in both ESI+ and ESI- modes. The method was validated according to the European Commission Decision 2002/657/EC. Decision limits (CCalpha) were between 0.16 and 1 ng ml(-1) for the compounds detected with the LC/MS/MS method. The developed method is used in routine analysis in our laboratory.  相似文献   

6.
In recent years products containing 6alpha-methylandrost-4-ene-3,17-dione have appeared on the sport supplement market. Scientific studies have proven aromatase inhibition and anabolic and mild androgenic properties; however, no preparation has been approved for medical use up to now. In sports 6alpha-methylandrost-4-ene-3,17-dione has to be classified as a prohibited substance according to the regulations of the World Anti-Doping Agency (WADA). For the detection of its misuse the metabolism was studied following the administration of two preparations obtained from the Internet (Formadrol and Methyl-1-Pro). Several metabolites as well as the parent compounds were synthesized and the structures of 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one, 6alpha-methylandrost-4-ene-3,17-dione, and 5beta-dihydromedroxyprogesterone were confirmed by nuclear magnetic resonance (NMR) spectroscopy. The main metabolite, 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one, was found to be excreted as glucuronide and was still detectable in microg/mL amounts until urine collection was terminated (after 25 h). Additionally, samples from routine human sports doping control had already tested positive for the presence of metabolites of 6alpha-methylandrost-4-ene-3,17-dione. Screening analysis can be easily performed by the existing screening procedure for anabolic steroids using 3alpha-hydroxy-6alpha-methyl-5beta-androstan-17-one as target substance (limit of detection <10 ng/mL). Its discrimination from the closely eluting drostanolone metabolite, 3alpha-hydroxy-2alpha-methyl-5alpha-androstan-17-one, is possible as the mono-TMS derivative.  相似文献   

7.
Both acetic acid and acetate catalyze the isomerization of 5-androstene-3,17-dione (1) to its conjugated isomer, 4-androstene-3,17-dione (3), through a dienol(ate) intermediate. The temperature dependence of the overall isomerization rate constants and of the microscopic rate constants for this isomerization was determined, and the Arrhenius plots give the activation enthalpy and entropy for each step. The source of the activation energy for the overall isomerization and for each of the individual steps is predominantly enthalpic, with a moderate to low entropic penalty. Additionally, the entropy and enthalpy for the keto-enol equilibrium of 1 and dienol were determined; this equilibrium is entirely controlled by enthalpy with no entropic contribution. The relevance of these results to the mechanism of the isomerization of 1 catalyzed by the enzyme 3-oxo-Delta(5)-steroid isomerase is discussed.  相似文献   

8.
Anastrozole (2,2'-[5-(1H-1,2,4-triazol-1-ylmethyl)-1.3-phenylene]bis(2-methylpropionitrile)) and exemestane (6-methylenandrostan-1,4-diene-3,17-dione) are therapeutically used to treat hormone-sensitive breast cancer in postmenopausal women. For doping purposes they may be used to counteract adverse effects of an extensive abuse of anabolic androgenic steroids (gynaecomastia) and to increase plasma testosterone concentrations. Excretion study urine samples and spot urine samples from women suffering from metastatic breast cancer, being treated with anastrozole or exemestane, were collected and analyzed to develop/optimize a detection system for anastrozole and exemestane to allow the identification of athletes who do not comply with the internationally prohibited use of these cancer drugs. The assay was based on liquid-liquid extraction after enzymatic hydrolysis following liquid chromatography/tandem mass spectrometry (LC/MS/MS). Anastrozole, exemestane and its main metabolite (17-dihydroexemestane) were identified in urine by comparison of mass spectra and retention times with respective reference substances. An assay validation for the analysis of anastrozole and exemestane was performed regarding lower limits of detection (anastrozole: 0.02 ng/mL; exemestane: 3.1 ng/mL; dihydroexemestane: 0.5 ng/mL), interday precisions (6.6-11.1%, 4.9-9.1% and 5.6-8.3% for low [10 ng/mL], medium [50 ng/mL] and high [100 ng/mL] concentration) and recoveries (ranged from 85-97%).  相似文献   

9.
Faeces, which could be a potential alternative medium for doping control, have been used for the detection of 1,4-androstadiene-3,17-dione administration to the horse. Semi-quantitative analyses of 1,4-androstadiene-3,17-dione, testosterone, 17alpha- and 17beta-boldenone have been conducted in pre- and post-administration faeces, and in controls (untreated stallions, geldings and mares). Sample preparation comprised diethyl ether extraction, lipid removal, HPLC purification and derivatisation. 1,4-Androstadiene-3,17-dione, testosterone, 17alpha- and 17beta-boldenone were analysed by GC-EI/MS/MS. Quantitative limits of detection were 0.1 ng/g for 1,4-androstadiene-3,17-dione, and 0.025 ng/g for testosterone, 17alpha- and 17beta-testosterone. In post-administration samples from geldings and mares, peak levels of 1,4-androstadiene-3,17-dione, 17alpha-, 17beta-boldenone and testosterone were attained 24 h after administration. In untreated geldings and mares (in di- or anoestrus), 17alpha- and 17beta-boldenone and testosterone were not detected. Faeces from females in oestrus had detectable levels of boldenone isomers and testosterone. 1,4-Androstadiene-3,17-dione was undetectable in faeces collected from untreated horses, but the presence of this androgen was recently reported in faeces from untreated swine and it would therefore be advisable to check for its possible presence in a larger number of individual faecal samples.  相似文献   

10.
A sensitive and variable-wavelength optical rotatory (OR) detector for high-performance liquid chromatography is presented. This design is entirely different from that of conventional OR detectors consisting of a crossed polarizer pair. By placing a polarizing prism and a retardation plate into a commercial circular dichroism (CD) detector, the OR signal was obtained. The Mueller matrix approach was used to prove the principle of the OR signal appearance. Sugars and 4-androstene-3,17-dione were chosen as test compounds. The limit of detection was below 0.5 microg of injected sucrose at 260 nm, which was superior to that obtained with a conventional OR detector. For 4-androstene-3,17-dione, which is CD active, and shows a large anomalous OR dispersion curve, our detector gave a large OR signal with approximately half the intensity of the CD signal at 340 nm.  相似文献   

11.
A sensitive ultra-performance liquid chromatography-electrospray tandem mass spectrometry method, combined with solid-phase extraction and silica cartridge cleanup, was established for nine androgens (androstenedione, 19-nor-4-androstene-3,17-diol, androsterone, epiandrosterone, testosterone, methyltestosterone, trenbolone, nandrolone, stanozolol) and nine progestogens (progesterone, 17alpha-hydroxyprogesterone, 21alpha-hydroxyprogesterone, 6alpha-methyl-hydroxyprogesterone, 17alpha,20beta-dihydroxy-4-pregnene-3-one, megestrol acetate, norethindrone, norgestrel, medroxyprogesterone acetate) in environmental waters. For the various water matrices considered, the overall method recoveries were from 78 to 100%, and no apparent signal suppression was found. The method detection limits for the eighteen analytes in the influent, effluent and surface water samples were 0.20-50, 0.04-20 and 0.01-12 ng/L, respectively. This method was used to analyze the residual androgens and progestogens in the wastewater and surface water samples from Japan, and ten analytes (0.03 (medroxyprogesterone acetate)-1441 ng/L (androsterone)) were detected in the wastewater samples, and four analytes (0.06 (progesterone)-0.46 ng/L (androstenedione)) were detected in the surface water samples.  相似文献   

12.
The present work displays capillary liquid chromatographic column switching methodology tailored for determination of benzo[a]pyrene tetrol isomers in biological matrices using on-line fluorescence and micro-electrospray ionization mass spectrometric detection. A well-established off-line crude solid phase extraction procedure was used in order to make the method compatible with several biological matrices. The solid phase extraction eluates were evaporated to dryness, redissolved in 1.0 ml methanol:water (10:90, v/v), loaded onto a 0.32 mm I.D. x 40 mm 5 microm Kromasil C(18) pre-column for analyte enrichment and back-flushed elution onto a 0.30 mm I.D. x 150 mm 3.5 microm Kromasil C(18) analytical column. The samples were loaded with a flow rate of 50 microl min(-1) and the tetrols were separated at a flow rate of 4 microl min(-1) with an acetonitrile:10 mM ammonium acetate gradient from 10 to 90%. A sample loading flow rate up to 50 microl min(-1) was allowed. The fluorescence excitation and emission were set to 342 and 385 nm, respectively, while mass spectrometric detection of the benzo[a]pyrene tetrols was obtained by monitoring their [M - H](-) molecular ions at m/z 319. The method was validated over the concentration range 0.1-50 ng ml(-1) benzo[a]pyrene tetrols in a cell culture medium with 100 microl injection volume, fluorescence detection and the first eluting tetrol isomer as model compound, resulting in a correlation coefficient of 0.993. The within-assay (n= 6) and between-assay (n= 6) precisions were determined to 2.6-8.6% and 3.8-9.6%, respectively, and the recoveries were determined to 97.9-102.4% within the investigated concentration range. The mass limit of detection (by fluorescence) was 3 pg for all the tetrol isomers, corresponding to a concentration limit of detection of 30 pg ml(-1) cell culture medium. The corresponding mass spectrometric mass limits of detection were 4-10 pg, corresponding to concentration limits of detection of 40-100 pg ml(-1) cell culture medium.  相似文献   

13.
The metabolism and excretion of androst-4-ene-3,6,17-trione after administration of the 'nutritional' supplement 6-OXO was investigated by gas chromatography-mass spectrometry (GC-MS) in full-scan mode. The parent drug androst-4-ene-3,6,17-trione and androst-4-ene-6alpha,17beta-diol-3-one and androst-4-ene-6alpha-ol-3,17-dione were detected in the post-administration urine samples. Because androst-4-ene-3,6,17-trione is an anabolic steroid and an aromatase inhibitor, this substance is regarded as a doping agent. Hence, a selective and sensitive GC-MS method in selected ion monitoring mode for the detection of the TMS-enol-TMS-ether derivatives of these substances was developed and validated for doping control purposes. The limit of detection (LOD) of the investigated compounds ranged from 5 to 10 ng/mL. Using this method, the detection time for androst-4-ene-3,6,17-trione and androst-4-ene-6alpha,17beta-diol-3-one was 24 h, while androst-4-ene-6alpha-ol-3,17-dione could be detected up to 37 h after administration of the dose recommended by the manufacturer.  相似文献   

14.
Testosterone metabolism revisited: discovery of new metabolites   总被引:1,自引:0,他引:1  
The metabolism of testosterone is revisited. Four previously unreported metabolites were detected in urine after hydrolysis with KOH using a liquid chromatography–tandem mass spectrometry method and precursor ion scan mode. The metabolites were characterized by a product ion scan obtained with accurate mass measurements. Androsta-4,6-dien-3,17-dione, androsta-1,4-dien-3,17-dione, 17-hydroxy-androsta-4,6-dien-3-one and 15-androsten-3,17-dione were proposed as feasible structures for these metabolites on the basis of the mass spectrometry data. The proposed structures were confirmed by analysis of synthetic reference compounds. Only 15-androsten-3,17-dione could not be confirmed, owing to the lack of a commercially available standard. That all four compounds are testosterone metabolites was confirmed by the qualitative analysis of several urine samples collected before and after administration of testosterone undecanoate. The metabolite androsta-1,4-dien-3,17-dione has a structure analogous to that of the exogenous anabolic steroid boldenone. Specific transitions for boldenone and its metabolite 17β-hydroxy-5β-androst-1-en-3-one were also monitored. Both compounds were also detected after KOH treatment, suggesting that this metabolic pathway is involved in the endogenous detection of boldenone previously reported by several authors.  相似文献   

15.
The presence of microorganisms in urine samples, under favourable conditions of storage and transportation, may alter the concentration of steroid hormones, thus altering the correct evaluation of the urinary steroid profile in doping control analysis. According to the rules of the World Anti-Doping Agency (WADA technical document TD2004 EAAS), a testosterone deconjugation higher than 5% and the presence of 5α-androstane-3,17-dione and 5β-androstane-3,17-dione in the deconjugated fraction, are reliable indicators of urine degradation. The determination of these markers would require an additional quantitative analysis since the steroids screening analysis, in anti-doping laboratories, is performed in the total (free + conjugated) fraction. The aim of this work is therefore to establish reliable threshold values for some representative compounds (namely 5α-androstane-3,17-dione and 5β-androstane-3,17-dione) in the total fraction in order to predict directly at the screening stage the potential microbial degradation of the urine samples. Preliminary evidence on the most suitable degradation indexes has been obtained by measuring the urinary concentration of testosterone, epitestosterone, 5α-androstane-3,17-dione and 5β-androstane-3,17-dione by gas chromatography–mass spectrometric every day for 15 days in the deconjugated, glucuronide and total fraction of 10 pools of urines from 60 healthy subjects, stored under different pH and temperature conditions, and isolating the samples with one or more markers of degradation according to the WADA technical document TD2004EAAS. The threshold values for 5α-androstane-3,17-dione and 5β-androstane-3,17-dione were therefore obtained correlating the testosterone deconjugation rate with the urinary concentrations of 5α-androstane-3,17-dione and 5β-androstane-3,17-dione in the total fraction. The threshold values suggested as indexes of urine degradation in the total fraction were: 10 ng mL−1 for 5α-androstane-3,17-dione and 20 ng mL−1 for 5β-androstane-3,17-dione. The validity of this approach was confirmed by the analysis of routine samples for more than five months (i.e. on a total of more than 4000 urine samples): samples with a concentration of total 5α-androstane-3,17-dione and 5β-androstane-3,17-dione higher than the threshold values showed a percentage of free testosterone higher than 5 of its total amount; whereas free testosterone in a percentage higher than 5 of its total amount was not detected in urines with a concentration of total 5α-androstane-3,17-dione and 5β-androstane-3,17-dione lower than the threshold values.  相似文献   

16.
Within several regional field laboratories and the national reference laboratory a harmonised methodology for the analysis of anabolic residues in faecal samples was developed. The method consists of a liquid-liquid and a solid-phase extraction step, followed by a high-performance liquid chromatography purification step. Using gas chromatography-mass spectrometry, currently illegally used anabolic steroids can be detected in faeces at the ppb level. Within this context acidification, followed by centrifugation under cooling, allows efficient, practical and rapid defatting of faecal samples. Furthermore, a combination of a silica and an aminopropyl solid-phase extraction column was found to give the best results as regards the sample purification process.  相似文献   

17.
3-oxo-Delta5-steroid isomerase (ketosteroid isomerase, KSI) catalyzes the isomerization of 5-androstene-3,17-dione (1) to 4-androstene-3,17-dione (3) via a dienolate intermediate (2-). KSI catalyzes this conversion about 13 orders of magnitude faster than the corresponding reaction catalyzed by acetate ion, a difference in activation energy (DeltaG) of approximately 18 kcal/mol. To evaluate whether the decrease in DeltaG by KSI is due to enthalpic or entropic effects, the activation parameters for the isomerization of 1 catalyzed by the D38E mutant of KSI were determined. A linear Arrhenius plot of kcat/KM versus 1/T gives the activation enthalpy (DeltaH = 5.9 kcal/mol) and activation entropy (TDeltaS = -2.6 kcal/mol). Relative to catalysis by acetate, D38E reduces DeltaH by approximately 10 kcal/mol and increases TDeltaS by approximately 5 kcal/mol. The activation parameters for the microscopic rate constants for D38E catalysis were also determined and compared to those for the acetate ion-catalyzed reaction. Enthalpic stabilization of 2- and favorable entropic effects in both chemical transition states by D38E result in an overall energetically more favorable enzymatic reaction relative to that catalyzed by acetate ion.  相似文献   

18.
高效液相色谱串联质谱法同时测定水产品中24种性激素   总被引:2,自引:0,他引:2  
建立了同时测定24种性激素的高效液相色谱串联质谱法,包括:睾酮、甲基睾酮、诺龙、苯丙酸诺龙、群勃龙、康力龙、勃地酮、雄烯二酮、美雄酮、炔诺酮、乙酸甲孕酮、乙酸甲羟孕酮、乙酸氯地孕酮、17α羟基孕酮、21α羟基孕酮、甲羟孕酮、左炔诺孕酮、雌酮、雌二醇、雌三醇、炔雌醇、己烷雌酚、己烯雌酚、双烯雌酚。乙酸乙酯提取2次,硅胶柱净化。采用甲醇、水作为流动相,经过CAPCELLPAK C18色谱柱分离后,采用APCI离子源,外标法定量。方法定量限为0.5~2μg/kg,加标回收率为80%~102%,相对标准偏差为6%~10%。方法实现了3类性激素的同时定量及确证分析。  相似文献   

19.
文毅  汪颖  冯钰锜 《色谱》2006,24(5):471-474
建立了鸡蛋中磺胺嘧啶和磺胺二甲嘧啶残留量的聚合物整体柱微萃取和高效液相色谱检测方法。以聚(甲基丙烯酸-乙二醇二甲基丙烯酸酯)毛细管整体柱作为萃取装置。为了得到较高的萃取效率,优化了影响萃取效率的参数(萃取流速、萃取体积、样品基质pH值)。样品经过匀浆、乙醇提取、磷酸盐缓冲溶液稀释、离心等步骤后直接进行萃取。鸡蛋中磺胺嘧啶和磺胺二甲嘧啶的检出限分别为11.2 ng/g和8.8 ng/g,在50~5000 ng/g的浓度范围内具有良好的线性关系。加标回收率大于65%,日内、日间测定的相对标准偏差不高于8.2%。结果表明,方法简单、快速、灵敏度高,适用于鸡蛋中磺胺嘧啶和磺胺二甲嘧啶的常规分析。  相似文献   

20.
The identification of the in vitro metabolites of dehydroepiandrosterone formed from human prostate homogenate was investigated by hyphenated techniques using the stable-isotope dilution method. A mixture of dehydroepiandrosterone and [2H4]dehydroepiandrosterone was incubated with hypertrophied human prostate tissue homogenate in the presence of NAD, NADH and NADPH. The metabolites were extracted with AcOEt-hexane, purified by solid-phase extraction, and then analyzed by LC-atmospheric pressure chemical ionization MS and/or GC-MS. Androst-5-ene-3beta,17beta-diol (major product), androst-4-ene-3,17-dione, testosterone, 5alpha-dihydrotestosterone, androsterone, and 7alpha-hydroxydehydroepiandrosterone were identified in comparison with authentic samples based on their chromatographic behavior and mass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号