首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
针对数据密集型作业的特点,提出一个基于CPU和图形处理器(GPU)两个影响因素构建计算节点的能耗评估模型.该模型基于原虚拟机选择节能算法(ABCS)在虚拟机选择节能策略中的能效优势,进一步利用启发式思想改进蜂群优化算法,寻求虚拟机整合的最优解.在CloudSim 3.0云计算模拟器中的实验结果表明,启发式反向蜂群算法能在保证服务质量的前提下,有效降低虚拟机迁移次数,进而降低数据中心的能耗(节能25%~30%).  相似文献   

2.
针对高维数据集结构复杂且冗余度高的问题,提出一种新型二进制人工蜂群算法进行特征选择。该算法在雇佣蜂蜜源搜索阶段应用差分思想,增加多项式差分变异算子,实现蜜源更新环节的多维性、高效性;在跟随蜂阶段和侦察蜂阶段分别引入交叉算子和最优保存策略,进一步打破局部最优,有效提升了人工蜂群算法的收敛效果;对蜜源的二进制初始化处理,使得算法在特征选择过程中取得了良好表现。在4个Benchmark测试函数上进行实验,结果表明,新算法的寻优精度和收敛速度优于其他4种经典搜索算法。同时,选取7个常用高维数据集进行特征选择,并与7种经典降维算法进行对比,发现新算法的特征约简程度普遍高于88%,并且随着数据集维度的增高,新算法的降维程度和分类精度优于其他7种降维算法。  相似文献   

3.
提出基于反向学习的人工蜂群算法(简称OABC算法).在人工蜂群算法的跟随蜂阶段,种群依概率进行反向学习代替跟随蜂搜索方案.保留标准人工蜂群算法中雇佣蜂和侦察蜂阶段以保证种群的探索能力以及种群的多样性,增设参数控制一般的反向学习过程中对位搜索范围,充分利用种群信息和个体信息优化种群,提高对位点的有效性,从而提高反向学习的成功率.仿真实验结果表明,OABC算法有效提升了算法寻优速度和收敛精度.  相似文献   

4.
5.
为了提高绿色云计算的能源利用率并降低其能耗,提出了一种基于蚁群优化算法的虚拟机迁移策略,该策略的目标是最小化云计算中心能耗的同时保证服务质量.首先,通过预设资源利用率阈值,找出低负载和过载的物理机;然后通过迁出低负载和过载服务器节点上的虚拟机,达到节能的目的;最后,根据虚拟机迁移列表,采用蚁群优化算法快速寻找虚拟机迁移最佳物理机.仿真结果表明,与其他算法相比,本文提出的迁移策略的执行时间和能耗最小.  相似文献   

6.
为了节省云数据中心的能量消耗,提出一种融合虚拟机选择的虚拟机放置方法.该策略将虚拟机迁移过程划分为物理主机状态检测,虚拟机选择和虚拟机放置3个步骤;在物理主机状态检测和虚拟机选择阶段,选取了Cloudsim项目中已有的且被证明是优秀的鲁棒局部归约检测方法和最小迁移时间选择方法;在最后的虚拟机放置阶段,以虚拟机和物理主机...  相似文献   

7.
针对云资源调度中任务分配效率和资源利用率低等情况,提出一种改进的人工蜂群算法.在基本人工蜂群算法基础上,将交叉机制与全局最优引导的人工蜂群算法相结合,增强人工蜂群算法中蜂群对蜜源的开发能力,同时保持探索能力.在观察蜂选择策略中,引入灵敏度的概念.灵敏度通过配合蜜源信息素而让观察蜂选择蜜源,增加种群的多样性,避免算法陷入...  相似文献   

8.
深入分析云计算环境下虚拟机资源调度分配的调度结构及与之对应的调度策略和算法后,结合云计算资源分配的最新研究成果和发展趋势,研究出一种基于聚类算法和蚁群算法的虚拟机资源分配算法.该算法基于Map/Reduce框架提出,着眼于如何为众多不同的用户任务分配虚拟机节点,充分考虑云计算环境中物理机的地域差异.在一个物理机区域内寻找分配虚拟机资源时引入蚁群算法,能更好地确保用户任务的按时完成,任务执行时间跨度方面满足服务等级协议(SLA).  相似文献   

9.
为快速实现多目标跟踪的数据关联,将人工蜂群算法(ABC)与多目标跟踪数据关联相结合,实现快速的多目标跟踪数据关联.本文以跟踪门确定目标的有效量测,以新息的似然函数描述量测与目标的关联关系,建立多目标数据关联的组合优化模型,详细阐述了人工蜂群算法的基本原理,工作流程.利用人工蜂群算法寻找多目标数据关联优化组合模型的最优解,人工蜂群算法在离散空间的启发式机制实现搜索目标的量测与最佳数据关联.仿真表明,该算法与经典的JPDA算法以及基于元启发式的蚁群算法的数据关联算法进行比较,提高目标关联准确性和跟踪精度.  相似文献   

10.
Xen是一种开源的虚拟化软件,在虚拟机动态迁移技术领域有着广泛的应用。在分析了Xen虚拟机动态迁移技术原理及迁移架构的基础上设计并开展相关实验,将实验结果中不同负载情况对迁移性能的影响做了对比分析后发现Xen能够较好的完成虚拟机在线迁移工作,为虚拟环境下的服务器负载平衡提供了保障。  相似文献   

11.
人工蜂群算法中的侦察蜂阶段的搜索操作在一定程度上可以解决算法陷入局部最优的问题,但也和其他启发式优化算法一样,存在着局部搜索能力差,在接近最优解时搜索效率下降,以及求解复杂问题时可能陷入局部最优而使算法停滞等缺陷。为了改善此缺陷,采用NM算法来取代人工蜂群算法侦察蜂阶段的随机产生个体机制,提出了一种基于NM算法的改进人工蜂群算法(NMABC)。希望基于NM算法优异的局部搜寻能力,改善人工蜂群算法局部搜索能力较差之缺陷并提高搜索效率。  相似文献   

12.
雇用蜂觅食策略对人工蜂群算法性能有较大影响,而单一的觅食策略难以适用于所有问题的搜索空间,并且算法运行的不同阶段所适合的搜索策略也不尽相同.因此,如何为一个给定的函数优化问题选择最佳的觅食策略尤为重要.针对这一问题,提出了一种基于反馈的觅食策略自适应人工蜂群算法SSABC,该算法能够在优化过程中为一个给定的优化问题自动选择最佳的觅食策略.实验表明,与经典ABC(artificial bee colony algorithm),PSO(particle swarm optimization),DE(differential evolution),GA(genetic algorithm)算法相比,SSABC算法的寻优能力有较大提高.  相似文献   

13.
针对人工蜂群算法以及现有改进算法的不足,提出了一种基于子种群的改进人工蜂群算法.此算法利用个体适应值与种群适应值平均值的比较,将种群划分为两个子种群,每个子种群采用不同的搜索方式,有效地平衡了不同搜索方式的探索和开发能力.此外,采用分段Logistic方程的初始化方法产生初始解,提高算法的收敛速度.与基本蜂群算法和其他改进蜂群算法进行比较,数值仿真结果表明,所提算法在处理复杂数值优化问题时具有更好的寻优精度和收敛速度.  相似文献   

14.
根据极限平衡原理,推导出了适合地震作用下成层状岩土体边坡稳定性计算的水平条分法公式,并将人工蜂群算法用于水平条分法边坡最危险滑动面搜索,提出了基于人工蜂群算法的边坡稳定性的极限平衡水平条分法.算例分析表明,该方法能快速搜索到全局最优解,稳定性计算结果是可靠的,适合成层状岩土体边坡稳定性分析.  相似文献   

15.
研究成组技术中加工中心的组成问题。在满足各中心机器间相似系数最大的情况下,寻求最优组成方案。针对人工蜂群算法搜索缓慢、易出现早熟等问题,提出了一种模糊人工蜂群算法。该算法采用模糊位置矩阵表示问题的解,重新定义了候选解产生公式,并设计了新的选择概率公式。建立了模糊位置矩阵与问题可行解的映射关系。仿真结果表明,该算法是可行、有效的。  相似文献   

16.
为促进人工蜂群算法理论和应用的发展, 在分析人工蜂群算法的基本原理基础上, 针对算法的不足, 全面地归纳了国内外学者对算法的改进研究, 对算法的蜜源初始化、更新策略的改进、调整策略的改进、适应度函数的选择以及与其他算法的融合进行综述, 提出了更有效的改进策略。同时从多方面综述了人工蜂群算法的应用, 并对人工蜂群算法的发展方向进行了总结和展望。  相似文献   

17.
现场服务调度问题是一类极为复杂的NP难题,是影响现场服务效率的关键问题。针对现有研究中未考虑客户满意度的问题,综合运用前景理论与模糊理论,以降低客户平均不满意度为目标,建立了有时间窗约束的现场服务调度问题模型;并借助改进的最廉价插入法与人工蜂群算法结合的方法对该问题进行优化求解。最后,通过算例仿真发现,与传统的贪婪算法相比,人工蜂群算法在优化质量和鲁棒性方面的优势更为明显。  相似文献   

18.
由于基本多目标人工蜂群算法存在着种群盲目搜索、算法开发能力有限等缺点,在利用人工蜂群算法求解多目标优化问题时,提出了一种改进的人工蜂群算法.通过在算法中引入自适应搜索机制和变异机制等操作,使得种群个体可以有针对性地进行更新,同时也大大提高了种群个体的多样性.最后利用几种多目标的测试函数对改进前后的多目标人工蜂群算法的性能进行测试,结果表明:改进后多目标人工蜂群算法具有良好的算法收敛性和均匀性.  相似文献   

19.
基于粒子群和人工蜂群算法的混合优化算法   总被引:1,自引:0,他引:1  
王志刚 《科学技术与工程》2012,12(20):4921-4925,4934
提出一种基于粒子群(PSO)和人工蜂群算法(ABC)相结合的新型混合优化算法—PSOABC。该算法基于一种双种群进化策略,一个种群中的个体由粒子群算法进化而来,另一种群的个体由人工蜂群算法进化而来,并且在人工蜂群算法中按轮盘赌的方式选择个体进化所需的随机个体。此外,算法采用一种信息分享机制,使两个种群中的个体可以实现协同进化。对4个基准函数进行仿真实验并与ABC进行比较,表明本文提出的算法能有效地改善寻优性能,增强摆脱局部极值的能力。  相似文献   

20.
相对于先前的并行人工蜂群算法进行了一些改进,主要采用OpenCL本地内存、并行规约等技术,提出了一种基于图形处理器(GPU)改进的并行人工蜂群算法.该算法将采蜜蜂映射为OpenCL一个工作项,跟随蜂采用右邻域优先的局部选择机制.实验结果表明:文中提出的改进并行人工蜂群算法提高了算法的执行效率,收敛速度得到提升.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号