首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
When nanoparticles (NPs) enter a biological environment, medium components, especially proteins, compete for binding to the NP’s surface, leading to development of a new interface, commonly referred to as the “protein corona.” This rich protein shell gives the NPs a biological identity that can be very different from their synthetic one, in terms of their chemical–physical properties. Understanding NP–protein interaction is crucial for both the bioapplications and safety of nanomaterials. The protein corona provides the primary contact to the cells and their receptors. It defines in vivo fate of the delivery systems, governing the stability, immunogenicity, circulation, clearance rates and organ biodistribution of the NPs. Given its importance, the application and the development of analytical methods to investigate the protein corona are crucial. This review gives an overview of chromatographic, electrophoretic, mass spectrometric and proteomic methods because these techniques have the advantage to be able to identify and quantify individual proteins adsorbed onto the corona. This capability opens up the possibility to exploit the protein corona for specific cell targeting.  相似文献   

2.

When nanoparticles (NPs) enter a biological environment, medium components, especially proteins, compete for binding to the NP’s surface, leading to development of a new interface, commonly referred to as the “protein corona.” This rich protein shell gives the NPs a biological identity that can be very different from their synthetic one, in terms of their chemical–physical properties. Understanding NP–protein interaction is crucial for both the bioapplications and safety of nanomaterials. The protein corona provides the primary contact to the cells and their receptors. It defines in vivo fate of the delivery systems, governing the stability, immunogenicity, circulation, clearance rates and organ biodistribution of the NPs. Given its importance, the application and the development of analytical methods to investigate the protein corona are crucial. This review gives an overview of chromatographic, electrophoretic, mass spectrometric and proteomic methods because these techniques have the advantage to be able to identify and quantify individual proteins adsorbed onto the corona. This capability opens up the possibility to exploit the protein corona for specific cell targeting.

  相似文献   

3.
Networks of pristine single walled carbon nanotubes (SWNTs) grown by catalysed chemical vapour deposition (cCVD) on an insulating surface and arranged in an ultramicroelectrode (UME) format are insensitive to the electro-oxidation of hydrazine (HZ) in aqueous solution, indicating a negligible metallic nanoparticle content. Sensitisation of the network towards HZ oxidation is promoted by the deliberate and controlled electrodeposition of "naked" gold (Au) nanoparticles (NPs). By controlling the deposition conditions (potential, time) it is possible to control the size and spacing of the Au NPs on the underlying SWNT network. Two different cases are considered: Au NPs at a number density of 250 ± 13 NPs μm(-2) and height 24 nm ± 5 (effective surface coverage, θ = 92%) and (ii) Au NPs of number density ~ 22 ± 3 NPs μm(-2) and height 43 nm ± 8 nm (θ = 35%). For both morphologies the HZ oxidation half-wave potential (E(1/2)) is shifted significantly negative by ca. 200 mV, compared to a gold disc UME of the same geometric area, indicating significantly more facile electron transfer kinetics. E(1/2) for HZ oxidation for the higher density Au NP-SWNT structure is shifted slightly more negative (by ~25 mV) than E(1/2) for the lower density Au NP electrode. This is attributed to the lower flux of HZ at NPs in the higher number density arrangement (smaller kinetic demand). Importantly, using this approach, the calculated HZ oxidation current density sensitivities for the Au NP-SWNT electrodes reported here are higher than for many other metal NP functionalised carbon nanotube electrodes.  相似文献   

4.
Zhang J  Yang C  Wang X  Yang X 《The Analyst》2012,137(14):3286-3292
A colorimetric sensor for nitrite ion with high selectivity and sensitivity by unmodified citrate-capped gold nanoparticles (Au NPs) is presented. Recognition of nitrite is developed on the basis of a highly specific diazo reaction between nitrite and phenylenediamine (PDA). PDA caused the Au NPs to aggregate owing to the strong covalent NH-Au bond, with a clear color change of solution from red to blue being visualized. In the presence of phosphoric acid and nitrite, the amines of PDA would readily be converted to diazo bonds, and a red solution was observed after the subsequent addition of Au suspension due to the much less strength of electrostatic interaction between the positive diazo groups and the negative citrate-capped Au NPs. With this colorimetric "light-up" method, <1 ppm of nitrite can be easily detected within 5 min at room temperature without instrumentation. Since the diazo reaction and the colorimetric response are separate, this approach features the use of pristine Au NPs in an assay where acidic environment is a necessity, making it a more convenient and cost-effective method for the sensing of nitrite when compared with those utilizing chemically modified Au NPs.  相似文献   

5.
One application of octadecyltrichlorosilane (OTS) self‐assembled monolayers (SAMs) is its use as thin film resists. In this work, we demonstrated that OTS SAMs can be reliable resists for organo‐metallic chemical vapor deposition (OMCVD) grown gold nanoparticles (Au NPs). In optical sensing applications based on Au NPs, one candidate system consists of patterned OTS SAMs and precisely grown OMCVD Au NPs for achieving a high sensitivity. As an initial step, the OTS SAMs need to perfectly resist the OMCVD Au NP growth. Hence the optimized formation of the OTS SAMs affected by different assembly times and baking temperatures was studied by contact angle, ellipsometry, XPS, SEM, and atomic force microscopy (AFM). To demonstrate the ability of the OTS SAMs to resist OMCVD Au NP growth, the OMCVD process was carried out on two sets of samples: OTS SAMs fabricated under optimized conditions on one set and the other set without OTS SAMs. High‐resolution XPS, RBS, SEM, and ultraviolet‐visible (UV‐Vis) spectroscopy were applied to study the growth of Au NPs on the samples with and without OTS SAM resists. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Motivated by the technological possibilities of electronics and sensors based on gold nanoparticles (Au NPs), we investigate the selective assembly of such NPs on electrodes via DNA hybridization. Protocols are demonstrated for maximizing selectivity and coverage using 15mers as the active binding agents. Detailed studies of the dependences on time, ionic strength, and temperature are used to understand the underlying mechanisms and their limits. Under optimized conditions, coverage of Au NPs on Au electrodes patterned on silicon dioxide (SiO2) substrates was found to be approximately 25-35%. In all cases, Au NPs functionalized with non-complementary DNA show no attachment and essentially no nonspecific adsorption is observed by any Au NPs on the SiO2 surfaces of the patterned substrates. DNA-guided assembly of multilayers of NPs was also demonstrated and, as expected, found to further increase the coverage, with three deposition cycles resulting in a surface coverage of approximately 60%.  相似文献   

7.
In order to improve their bioapplications, inorganic nanoparticles (NPs) are usually functionalized with specific biomolecules. Peptides with short amino acid sequences have attracted great attention in the NP functionalization since they are easy to be synthesized on a large scale by the automatic synthesizer and can integrate various functionalities including specific biorecognition and therapeutic function into one sequence. Conjugation of peptides with NPs can generate novel theranostic/drug delivery nanosystems with active tumor targeting ability and efficient nanosensing platforms for sensitive detection of various analytes, such as heavy metallic ions and biomarkers. Massive studies demonstrate that applications of the peptide–NP bioconjugates can help to achieve the precise diagnosis and therapy of diseases. In particular, the peptide–NP bioconjugates show tremendous potential for development of effective anti-tumor nanomedicines. This review provides an overview of the effects of properties of peptide functionalized NPs on precise diagnostics and therapy of cancers through summarizing the recent publications on the applications of peptide–NP bioconjugates for biomarkers (antigens and enzymes) and carcinogens (e.g., heavy metallic ions) detection, drug delivery, and imaging-guided therapy. The current challenges and future prospects of the subject are also discussed.  相似文献   

8.
Self‐assembly of gold nanoparticles into one‐dimensional (1D) nanostructures with finite primary units was achieved by introducing a thin salt (NaCl) solution layer into density gradient before centrifugation. The electrostatic interactions between Au nanoparticles would be affected and cause 1D assembly upon passing through the salt layer. A negatively charged polymer such as poly(acrylic acid) was used as an encapsulation/stabilization layer to help the formation of 1D Au assemblies, which were subsequently sorted according to unit numbers at succeeding separation zones. A centrifugal field was introduced as the external field to overcome the random Brownian motion of NPs and benefit the assembly effect. Such a facile “one‐tube synthesis” approach couples assembly and separation in one centrifuge tube by centrifuging once. The method can be tuned by changing the concentration of interference salt layer, encapsulation layer, and centrifugation rate. Furthermore, positively charged fluorescent polymers such as perylenediimide‐poly(N,N‐diethylaminoethyl methacrylate) could encapsulate the assemblies to give tunable fluorescence properties.  相似文献   

9.
A novel method has been developed to fabricate the assembly of Au colloidal nanoparticles (NPs) using SiO(2) monomers. The key strategy was the use of a controlled sol-gel procedure including hydrolysis, deposition, and condensation of tetraethyl orthosilicate (TEOS). Namely, the assembly of Au NPs was created by the anisotropic deposition of SiO(2) monomers and subsequent permanent fixing by the growth of a SiO(2) shell. Various assemblies of Au NPs such as dimer, trimer, and pearl-chain morphology were fabricated by systematically changing the concentration and injection speed of TEOS. A longitudinal plasmon resonance band was observed as a result of the assembly of Au NPs and can be tuned from visible to near-infrared by altering the length of pearl-chain morphology. In addition, single Au NP was homogeneously coated with a SiO(2) shell by means of controlling the deposition rate of SiO(2) monomers during a Sto?ber synthesis without the use of a silane coupling agent or bulk polymer as the surface primer to render the Au surface vitreophilic. The Au NPs (mean size 11.4 nm in diameter) were thus encapsulated into SiO(2) beads with a wide range of sizes (from 20 to 50 nm in diameter). These pure SiO(2)-coated Au beads with tunable shell thickness should be crucial for biosensors, particularly as Raman-tag particles.  相似文献   

10.
Ternary Ag/Polyaniline/Au nanocomposites were synthesized successfully by immobilizing of Au nanoparticles (NPs) on the surface of Ag/Polyaniline (PANI) nanocomposites. Ag/PANI nanocomposites were prepared via in situ chemical polymerization of aniline in the presence of 4-aminothiophenol (4-ATP) capped silver colloidal NPs. Then, uniform gold (Au) NPs were assembled on the surface of resulted Ag/PANI nanocomposites through electrostatic interaction to get Ag/Polyaniline/Au nanocomposites. The nanocomposites were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), energy-dispersive X-ray spectroscopy (EDX), ultraviolet visible spectroscopy (UV-Vis), thermogravimetric analysis (TGA) and Fourier transform infrared spectroscopy (FTIR). Moreover, Ag/PANI/Au nanocomposites were immobilized on the surface of a glassy carbon electrode and showed enhanced electrocatalytic activity for the reduction of H2O2 compared with Ag/PANI.  相似文献   

11.
We report a new type of molecular sensor using a Au nanowire (NW)–Au nanoparticles (NPs) conjugated system. The Au NW–NPs structure is fabricated by the self‐assembly of biotinylated Au NPs on a biotinylated Au NW through avidin; this creates hot spots between NW and NPs that strongly enhance the Raman signal. The number of the Au NPs attached to the NW is reproducibly proportional to the concentration of the avidin, and is also proportional to the measured surface‐enhanced Raman scattering (SERS) signals. Since this well‐defined NW–NPs conjugated sensor is only a few micrometer long, we expect that development of multiplex nanobiosensor of a few tens micrometer size would become feasible by combining individually modified multiple Au NWs together on one substrate.  相似文献   

12.
以碱-水热法在金属Ti片上原位生长了TiO2纳米结构(纳米花和纳米线)薄膜,并采用低温静电自组装方法将超细贵金属(金、铂、钯)纳米颗粒均匀沉积于多孔TiO2薄膜上.负载于Ti片上的贵金属/TiO2纳米结构薄膜具有一体化结构、多孔架构和高光催化活性.超高分辨率场发射扫描电子显微镜(FESEM)直接观察表明贵金属纳米颗粒在TiO2表面分布均匀,且颗粒之间相互分离,金、铂、钯纳米颗粒的平均粒径分别约为4.0、2.0和10.0nm.俄歇电子能谱(AES)纵深成分分析表明贵金属不仅沉积于薄膜表面,且大量分布于TiO2纳米结构薄膜内部,其深度超过580 nm.X射线光电子能谱(XPS)分析表明,经300°C下在空气中热处理后,纳米金仍保持金属态,纳米铂部分被氧化成PtOabs,而钯粒子则完全被氧化成氧化钯(PdO).以低温静电自组装法沉积贵金属,贵金属负载量可通过调节组装时间与溶胶pH值来控制.光催化降解甲基橙的结果表明,沉积的纳米金和铂能显著增加TiO2纳米结构薄膜的光催化活性,说明金和铂粒子可促进光生载流子的分离;但负载的PdO对TiO2薄膜的光催化性能增强几乎无作用.  相似文献   

13.
The reversible assembly of β-cyclodextrin-functionalized gold NPs (β-CD Au NPs) is studied on mixed self-assembled monolayer (SAM), formed by coadsorption of redox-active ferrocenylalkylthiols and n-alkanethiols on gold surfaces. The surface coverage and spatial distribution of the β-CD Au NPs monolayer on the gold substrate are tuned by the self-assembled monolayer composition. The binding and release of β-CD Au NPs to and from the SAMs modified surface are followed by surface plasmon resonance (SPR) spectroscopy. The redox state of the tethered ferrocene in binary SAMs controls the formation of the supramolecular interaction between ferrocene moieties and β-CD-capped Au NPs. As a result, the potential-induced uptake and release of β-CD Au NPs to and from the surface is accomplished. The competitive binding of β-CD Au NPs with guest molecules in solution shifted the equilibrium of the complexation-decomplexation process involving the supramolecular interaction with the Fc-functionalized surface. The dual controlled assembly of β-CD Au NPs on the surface enabled to use two stimuli as inputs for logic gate activation; the coupling between the localized surface plasmon, associated with the Au NP, and the surface plasmon wave, associated with the thin metal surface, is implemented as readout signal for "AND" logic gate operations.  相似文献   

14.
MD simulation of the layer-by-layer assembly of polyelectrolytes (PEs) and nanoparticles (NPs) revealed that the assembly process is electrostatically driven with alternating charge reversal and an overcompensation mechanism. Layers were observed to grow in the lateral direction as well as in a direction normal to the surface. Weakly adsorbed PE molecules were observed to desorb from the flat and NP surfaces. Those molecules are attracted by suspended NPs in solution. PE molecules do not only pull NPs toward the surface but bridge NPs both in solution and on the surface, forming agglomerates and islands. The first double layer differs in structure from the second double layer as a result of strong adsorption of the PE molecules to the rigid surface.  相似文献   

15.
Metal nanoparticles (NPs) exhibit several unique physicochemical properties, including redox activity, surface plasmon resonance, ability to quench fluorescence, biocompatibility, or a high surface-to-volume ratio. They are being increasingly used in analysis and preconcentration of thiol containing compounds, because they are able to spontaneously form a stable Au/Ag/Cu–S dative bond. They thus find wide application in environmental and particularly in medical science, especially in the analysis of biological thiols, the endogenous compounds that play a significant role in many biological systems. In this review article, we provide an overview of various types of NPs that have been applied in analysis and preconcentration of biological thiols, mainly in human biological fluids. We first discuss shortly the types of NPs and their synthesis, properties, and their ability to interact with thiol compounds. Then we outline the sample preconcentration and analysis methods that were used for this purpose with special emphasis on optical, electrochemical, and separation techniques.  相似文献   

16.
Multifunctionality of nanotubes (NTs) is essential in biomedical and biotechnological applications, such as drug/gene delivery, bioseparation, and single-molecule detection. Each functionality should be located at optimal positions, depending on their roles such as targeting, tracking, and transporting. This enables avoidance of possible malfunctions or interference caused by having randomly distributed multiple groups (e.g., hydrophobic and hydrophilic) in the same space. In the aspect of multifunctionality, however, a general selective partial functionalization method of NT inner surfaces still remains a challenge. For this reason, we investigated a selective partial functionalization method of NTs using controlled gold nanoparticle (Au NP) diffusion in nanotubes and the preparation method of Au-capped silica nanotubes. Silica nanotubes (SNTs) were prepared using template sol-gel synthesis, and the inside of SNT was selectively modified with (3-trimethoxysilylpropyl) diethylenetriamine (DETA-silane). Au NPs of 2-nm size were then incubated with SNTs with DETA layer inside. Spontaneous diffusion of negatively charged Au NPs from bulk into the positively charged nanochannels of SNTs led trapped Au NPs onto the inner surface of SNTs. The degree of functionalization was controlled by the channel diameter, Au NP concentration, and solvent type. These SNTs partially modified with Au NPs were then used for localized selective chemical functionalization of SNTs. This was accomplished by the reaction between thionylated Au NPs trapped on the inside of SNTs and Alexa555-maleimide. Au-capped SNTs were prepared from SNTs with Au NPs inside by seed-mediated gold growth.  相似文献   

17.
Advances in chemical syntheses have led to the formation of various kinds of nanoparticles (NPs) with more rational control of size, shape, composition, structure and catalysis. This review highlights recent efforts in the development of Pt and non‐Pt based NPs into advanced nanocatalysts for efficient oxygen reduction reaction (ORR) under fuel‐cell reaction conditions. It first outlines the shape controlled synthesis of Pt NPs and their shape‐dependent ORR. Then it summarizes the studies of alloy and core–shell NPs with controlled electronic (alloying) and strain (geometric) effects for tuning ORR catalysis. It further provides a brief overview of ORR catalytic enhancement with Pt‐based NPs supported on graphene and coated with an ionic liquid. The review finally introduces some non‐Pt NPs as a new generation of catalysts for ORR. The reported new syntheses with NP parameter‐tuning capability should pave the way for future development of highly efficient catalysts for applications in fuel cells, metal‐air batteries, and even in other important chemical reactions.  相似文献   

18.
In this letter, we present a new design that uses single-stranded (ss) DNAs containing two stretches of cytosine (C)-rich domains for the controlled assembly of gold nanoparticles (Au NPs). We show that this assembly is driven by the formation of interparticle i-motif (four-stranded C-quadruplex) structures formed between the C-rich domains of the ssDNAs on neighboring Au NPs. The assembly happens only at slightly acidic pH conditions (pHs below the pKa of the i-motif). The assembly is reversible and can be switched by changing the solution pH. The assembly and disassembly process is accompanied by distinct color changes that are clearly visible to the naked eye. This development may have applications in the controlled assembly of reversible pH-sensitive nanostructures and/or devices.  相似文献   

19.
A versatile scheme for the preparation of nanoparticle (NP) multilayers is presented. The method is based on the step-by-step assembly of NPs and bishydroxamate disulfide ligand molecules by means of metal-organic coordination using easily synthesized tetraoctylammonium bromide (TOAB)-stabilized gold NPs. The assembly of NP multilayers was carried out via a Zr(IV)-coordinated sandwich arrangement of the hydroxamate ligands on Au and glass surfaces. The latter were precoated with electrolessly deposited Au clusters to enable binding of the first NP layer. The new method avoids the need to perform elaborate colloid reactions to prepare the NP building blocks. Au NP monolayer and multilayer films prepared in this manner were characterized by UV-vis spectroscopy, atomic force microscopy (AFM), and cross-sectional transmission electron microscopy (TEM), showing a regular growth of NP layers. The use of coordination chemistry as the binding motif between repeat layers allows for the convenient assembly of hybrid nanostructures comprising molecular and NP components. This was demonstrated by the construction of Au NP multilayers with controlled spacing from the surface or between two NP layers. Drying the samples during or after the construction process induces NP aggregation and changes in the film morphology and optical properties.  相似文献   

20.
Herein we report the generation of Au nanoparticles (NPs) by sparingly soluble acetanilide in water. We also report the formation of linear chain-like superstructures of self-assembled Au NPs, in the presence of excess acetanilide. This was achieved in two different ways. In the first method, acetanilide was added, with increasing concentration, into aqueous HAuCl(4) to produce Au NPs as well as for the formation of assembly, which varied according to the concentration of acetanilide. The other route involved formation of spherical Au NPs at the lowest concentration of acetanilide, which was followed by the formation of assembly of various lengths upon further addition of variable amount of acetanilide. The assemblies were stable in aqueous solution for days with characteristic UV-vis absorption spectra consisting of two peaks. While the wavelength of the first peak remained the same, the position of the second peak changed to longer wavelength with increasing acetanilide concentration. Interestingly, the linear chain-like arrays could be broken into individual particles by first dilution of the solution concentration followed by treatment with ultrasonic waves. The individual Au NPs again formed linear chain-like arrays upon addition of excess acetanilide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号