首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micellar solutions of poly(ethylene glycol) octylphenyl ether and n-hexyl alcohol in cyclohexane were used to study the formation of water-in-oil microemulsion system and to synthesize barium sulfate nanoparticles. Barium sulfate particles (the average diameter is 10 nm) were obtained by mixing two microemulsion systems containing Ba2+and SO2– 4ions. It was shown that the sizes of BaSO4particles measured by the dynamic light scattering and electron microscopy are in good agreement with each other.  相似文献   

2.
The extraction of cobalt by Winsor II microemulsion system was studied. In the bis (2-ethylhexyl) sulfosuccinate sodium salt (AOT)/n-pentanol/n-heptane/NaCl system, AOT was used as a anionic surfactant to form microemulsion in n-heptane, n-pentanol was injected in the microemulsion as a cosurfactant. Co(II) was found to be extracted into the microemulsion phase due to ion pair formation such as Co2+(R–SO3 )Cl. The influence of different parameters such as the volume ratio of aqueous phase to microemulsion, surfactant concentration, pH of the feed solutions, cosurfactant concentration as well as temperature on the extraction yield (E%) were investigated. The results showed that it was possible to extract 95% of cobalt by the AOT Winsor II microemulsion.  相似文献   

3.
Kinetic studies have been performed to understand the hydrolytic potencies of oximate (2- and 4-pyridinealdoxime) and its functionalized oximate (4-(hydroxyiminomethyl)-1-alkylpyridinium bromide) ions (alkyl?=?C10H21 (4-C10PyOx-); alkyl?=?C12H25 (4-C12PyOx-)) in the cleavage of phosphate esters, diethyl p-nitrophenylphosphate (Paraoxon) and p-nitrophenyl diphenyl phosphate (PNPDPP) in a cationic (O/W) microemulsion system (ME) over a pH range 7.5 to 11.0 at 300?K. The kobs values for the reaction of paraoxon with oximate and its functionalized oximate were determined in different microemulsion composition and the kinetic rate data shows that kobs values increases with increasing water content. The specificity of different chain length of alcohols (n-butanol, n-pentanol, n-hexanol and n-octanol) was also investigated in hydrolytic reactions of paraoxon for different microemulsion composition.  相似文献   

4.
Preparation of microlatex dispersions using oil-in-water microemulsions   总被引:1,自引:0,他引:1  
The preparation of microlatex dispersions from microemulsions of a monomer (styrene, methylmethacrylate or vinyl acetate) is described. A simple method for preparing the microemulsion has been devised. This consists of forming a water-in-oil (w/o) emulsion using a low (HLB) surfactant (nonylphenol with 5, 6 or 7 moles ethylene oxide) and then titrating with an aqueous solution of a high HLB surfactant (nonylphenol with 15 or 16 moles ethylene oxide). A small amount of anionic surfactant (sodium lauryl sulphate, sodium dodecyl benzene sulphonate or dioctyl sulphosuccinate) was also incorporated to enhance the stability of the w/o emulsion and facilitate the inversion to an o/w microemulsion. The droplet-size distribution of the resulting microemulsion was determined using photon-correlation spectroscopy.Three different methods of polymerising the microemulsion were used. These were thermally induced polymerisation using potassium persulphate, azobis-2-methyl propamidinium dichloride (AMP-water-soluble initiators) or azobisisobutyronitrile (AIBN, an oil-soluble initiator). All these initiators required heating to 60°C, i.e. above the stability temperature of the microemulsion. In this case, the microlatices produced were fairly large (37–100 nm diameter) and had a broad particle-size distribution. The second polymerisation procedure was chemically induced using a redox system of hydrogen peroxide and ascorbic acid. This produced microlatices with small sizes (18–24 nm diameter) having a narrow-size distribution. The microlatex size was roughly two to three times the size of the microemulsion droplets. This showed that collision between two or three microemulsion droplets resulted in their coalescence during the polymerisation process. The third method of polymerisation was based on UV irradiation in conjunction with K2S2O8, AMP or AIBN initiators. In this case, the microlatex size was also small (30–63 nm) with a narrow particle-size distribution.Microlatex particles were also prepared using a mixture of monomers (styrene plus methylmethacrylate) or mixture of monomers and a macromonomer, namely methoxy (polyethylene glycol)methacrylate. The latter was used to produce hairy particles, i.e. with grafted polyethylene oxide (PEO) chains.The stability of the microlatices was determined by adding electrolytes (NaCl, CaCl2, Na2SO4 or MgSO4) to determine the critical flocculation concentration (CFC). The nonionic latices were very stable giving no flocculation up to 6 mol dm–3 NaCl or CaCl2 and a CFC of 0.6 mol dm–3 for Na2SO4 or MgSO4. Charged latices were less stable than the nonionic ones. The critical flocculation temperatures (CFT) of all latices were determined as a function of electrolyte concentration. With the nonionic latices, CFC was higher than the -temperature for polyethylene oxide at the given electrolyte concentration. This indicated enhanced steric stabilisation as a result of the dense packing of the chains and hence an elastic contribution to the steric interaction. This was not the case with the charged latex, which showed CFT values lower than the -temperature. The hairy latices [i.e. those containing methoxy polyethylene glycol (PEG) methacrylate] were also less stable towards electrolyte (CFT was much lower than -temperature), indicating a low density of PEO layers.  相似文献   

5.
Nanoparticles of ferrites (Fe3O4, NiFe2O4, CuFe2O4, and MnFe2O4) were prepared by a reverse (water/oil) microemulsion method. The microemulsion system consisted of cetyltrimethylammonium bromide, 1-butanol, cyclohexane, and a metal salt solution. The procedure was carried out using aqueous ammonia as the coprecipitating agent. Nanosized particles were characterized by thermal analysis, X-ray diffraction, Fourier transform infrared spectroscopy, transmission electron microscopy, and pyridine adsorption. The NiFe2O4 sample exhibited narrow mesoporous pore size distribution and high surface area ≈233 m2/g. It achieved good adsorption activity towards the dibenzothiophene (DBT) compound (166.3 μmol/g of DBT adsorbent). The structural properties obtained were very interesting for potential applications in the desulfurization process in petroleum refining.  相似文献   

6.
提出一种由水, 异丙醇, 正丁醇组成的新型微乳液, 并以其为反应介质制备了甲烷高温燃烧La0.95Ba0.05MnAl11O19-a催化剂. 采用1H NMR, FT-IR, 电导法及激光粒度散射法研究了新型微乳液中水的结构及相特性. 新型微乳液中水的体积分数小于一定值时, 电导率与水含量成非线性关系, kφ曲线上存在一临界值(φP=0.15). 水质子的化学位移随水含量的降低移向高场. 加入4% D2O测定的O—D键的伸缩振动随水含量增加而向高波数方向移动. 异丙醇铝在新型微乳液中水解形成的Al(OH)3 胶体粒子的粒径范围为226~329 nm. 采用新型微乳液作为反应介质制备的Ba0.05La0.95MnAl11O19-α催化剂的粒径在30 nm, 明显小于纯水制备的样品(100 nm). BET 比表面积为65 m2/g, 比纯水制备样品高出约一倍. XRD结果显示, 1200 ℃焙烧10 h即可获得含单一β-Al2O3相的催化剂. Ba0.05La0.95MnAl11O19-α催化剂甲烷催化燃烧的T10为420 ℃, 比纯水制备样品下降了90 ℃. 甲烷催化燃烧活性提高是由于含有较多Mnn+纳米结构六铝酸盐的形成.  相似文献   

7.
A W/O microemulsion was prepared with Span80-PS (petroleum sulfonate) as complex emulsifier, isopropanol as cosurfactant and kerosene as oil phase. The optimal constituents of microemulsion were found from pseudoternary phase diagrams: the mass ratio of Span80 to PS was 4:1 and complex surfactant to cosurfactant was 1:1. The Fe3O4 magnetic fluid was obtained by one-step method with the W/O microemulsion as microreactor to synthesize magnetic nanoparticles (reaction temperature was 30 °C and reaction time was 5 h) and kerosene as carrier liquid. The magnetic fluid was investigated by TEM, XRD and fluorescence microscope. The magnetism was determined by Gouy magnetic balance. The average particle size of Fe3O4 was 7.4 nm, and magnetic particles were well-dispersed. The stable Fe3O4 magnetic fluid with good magnetism may be produced by one-step method in the W/O microemulsion. Accordingly, the traditional preparation method of magnetic fluid can be simplified greatly. __________ Translated from Chinese Journal of Applied Chemistry, 2005, 22 (7) (in Chinese)  相似文献   

8.
Yu L  Ye H  Zheng L  Chen L  Chu K  Liu X  Xu X  Chen G 《Electrophoresis》2011,32(2):218-222
A new method for separation and determination of amygdalin and its epimer (neoamygdalin) in the epimerization of amygdalin by MEEKC is proposed. For the chiral separation of amygdalin and neoamygdalin, a running buffer composed of 80 mM sodium cholate, 5.0% v/v butan‐1‐ol, 0.5% v/v heptane and 94.5% v/v 30 mM Na2B4O7 buffer (pH 9.00) is proposed. Under optimum conditions, the basic separation of amygdalin and neoamygdalin can be achieved within 7 min. The calibration curve for amygdalin showed excellent linearity in the concentration range of 20–1000 μg/mL with a detection limit of 5.0 μg/mL (S/N=3). The epimerization rate constant of amygdalin in basic microemulsion was first determined by monitoring the concentration changes of amygdalin, and the epimerization rate constant of amygdalin was found to be 2×10?3 min?1 at 25°C under the above optimum microemulsion conditions.  相似文献   

9.
超微镍粉的微乳液法制备研究   总被引:35,自引:0,他引:35  
采用水(溶液)/二甲苯/SDS/正戊醇反相微乳液体系,用水合肼还原硫酸镍制备了纳米级(15-100nm)镍微粒,采用XRD、TEM等法对产物进行了鉴定与表征,考察了微乳液体系诸构成因素对纳米级镍制备的影响规律。  相似文献   

10.
We have studied the segregation of a block copolymer of poly(d8-styrene-b-2-vinylpyridine) (dPS-PVP) at the interface between polystyrene and a random copolymer of poly(styreneran-4-hydroxystyrene) (PS-r-PPHS). Forward recoil spectrometry (FRES) was used to measure the equilibrium excess (z*) of the dPS-PVP chains at the interface as a function of its volume fraction in the bulk PS phase (?). It was found that there is a sharp increase in z* at a critical value of ?. This upturn indicates the formation of a microemulsion of PS and the random copolymer PS-r-PPHS due to a vanishing of the interfacial tension caused by the strong adsorption of the block copolymer. Cross-sectional transmission electron microscopy (TEM) of the interface shows that this microemulsion starts to form at the interface by forming a deeply corrugated structure where the “wavelength” of the corrugations is of the order of 50 nm. © 1995 John Wiley & Sons, Inc.  相似文献   

11.
Pt/Al2O3 catalyst was prepared successfully by a microemulsion method using cetyltrimethylammonium bromide (CTAB) as the surfactant and N2H5OH as the reducing agent. Selective hydrogenation of m-chloronitrobenzene (m-CNB) was used as a probe to investigate how parameters affect the preparation of catalysts via the microemulsion method. Transmission electron microscope (TEM) and selected-area electron diffraction (SAED) show that Pt particles (mean size 3 nm) were distributed uniformly on the catalyst and were in polycrystalline structure. Experiments on m-CNB selective hydrogenation show that at 303 K and hydrogen pressure of 0.1 MPa, the turnover frequency (TOF) was 0.216 s–1, the m-CNB conversion was 99.6% and the m-CAN selectivity was 98.9%, indicating high dechlorination inhibition effect. The reaction was an approximately first-order process with apparent activation energy of 26.92 kJ mol–1.  相似文献   

12.
The present study evaluates a new method to prepare Cerium oxide (CeO2) nanoparticles by formamide/tri(ethyleneglycol)monododecyl ether (C12E3)/n-octane oil-continuous nonaqueous microemulsion. The effect of the polar phase (formamide/water) on the phase behavior, drop size, and conductivity behavior of the reverse microemulsion were investigated. X-ray diffraction (XRD) and transmission electron microscopy (TEM) were used to characterize the phase and morphology of synthesized CeO2 nanoparticles. It was found that the CeO2 powders synthesized within nonaqueous microemulsions and aqueous microemulisons had an average particle size of 30–50 nm and 15–40 nm, respectively. The experimental results indicate the formation mechanism of CeO2 nanoparticles in formamide nonaqueous microemulsion and aqueous microemulsion is similar, and the formamide nonaqueous microemulsion can be used as nanoreactors for preparation of nanoparticles.  相似文献   

13.

The oxidation reaction of phenyl hydrazine (Phh) by hexacyanoferrate ([Fe(CN)6]3?) has been studied in water‐in‐oil (w/o) microemulsion media. The kinetic profile of the reaction was investigated as a function of [Phh], droplet size, and droplet concentration. Comparison of the kinetic profiles of the reaction in microemulsion, water‐urea, and water‐AOT‐urea media indicates that the kinetic profile of the reaction in microemulsion shows a behavior similar to that of the reaction in water‐AOT‐urea medium at 4 M urea. An initial increase and then a decrease in kobs is observed with increasing molar ratio, Wo(=[H2O]/[AOT]) at constant [AOT] (=0.4 M), whereas kobs decreases upon increasing the AOT concentration at constant molar ratio.  相似文献   

14.
A microemulsion consisting of sodium laurate, n-pentanol, n-heptane and NaCl solution was investigated for Co(II) extraction. The dilution method and conductivity method were used for the determination of structural parameters of sodium laurate/pentan-1-ol/heptane/NaCl microemulsion system. Co(II) was found to be extracted into the microemulsion phase due to the compound formation of [CoCl]+[R11COO]?, which was confirmed by the continuous variation of R11COONa concentration. Moreover, the effects of cosurfactant, the contact time, the phase ratios, PH and the NaCl concentration in feed solutions on the cobalt extraction yield were investigated. Under the optimum conditions, the extraction percentage of Co(II) could reach 98.9%.  相似文献   

15.
本文研究了单磺化酞菁镓(SPcGa)在水、微乳液(TritonX-100-壬烷-正戊醇-水)中的二聚现象和解聚反应动力学,测定了二聚平衡常数KD和解聚速率常数k。结果表明:SPcGa的解聚反应速率与SPcGa的单体浓度CM和双体浓度CD的关系为:V=k1CD-k2CM2  相似文献   

16.
Spinel Li4Mn5O12 nanoparticles are successfully prepared by water-in-oil microemulsion method and characterized by X-ray diffraction and scanning electron microscopy. The Li4Mn5O12 nanoparticles have sphere-like morphology with particle size less than 50 nm. The Li4Mn5O12 and activated carbon (AC) were used as electrodes of Li4Mn5O12/AC supercapacitor, respectively. The electrochemical capacitance performance of the supercapacitor was investigated by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedance spectroscopy. The results showed that the single electrode was able to deliver specific capacitance 252 F g?1 within potential range 0–1.4 V at a scan rate of 5 mV s?1 in 1 mol L?1 Li2SO4 solution, and it also showed high coulombic efficiency close to 100%. This material exhibited a good cycling performance.  相似文献   

17.
The phase behavior of water, diesel, limonene, and ethanol was investigated at ambient temperature using single nonionic alkyl polyglycol ethers (C14E3). Visual inspection as well as crosspolarizers was used to detect transparency and anisotropy. Ternary phase diagrams were determined. Combustion experiments using a four-cylinder diesel engine were carried out. Isotropic water in diesel microemulsion region (L2) and anisotropic liquid crystalline region (LC) were found with all combinations. Increasing the ratio of limonene to diesel reduced the microemulsion region while the presence of ethanol increased it on the expense of the LC region. Combustion tests performed on a selected formulation from the ternary phase diagram of water, diesel, ethanol, and C14E3 revealed substantial reduction of soot, NOx, and CO2 emissions compared to neat diesel.  相似文献   

18.
The hydrolysis reaction of O,O‐diethyl Op‐nitrophenylphosphate (Paraoxon) with the octanohydroxamate ion (OHA?) was studied in a cationic oil‐in‐water (O/W) microemulsion system over a pH range 7.5–12.0 at 300 K. The O/W systems are stabilized by using cationic surfactant, cetyltrimethylammonium bromide (CTAB), and n‐butanol as cosurfactants. In a microemulsion, the rate enhancement by OHA? is greater toward the cleavage of paraoxon than its spontaneous (2.1 × 107 s?1) hydrolysis. The kobs values for the reaction of paraoxon with OHA? were determined in different microemulsion compositions with varying chain length of alcohols (n‐butanol, n‐pentanol, n‐octanol, and n‐dodecanol) and alkanes (n‐hexane, n‐heptane, and n‐decane). The effects of water content, pH, and size of the oil pool have been discussed.  相似文献   

19.
The Gemini imidazolium surfactants with a four-methylene spacer group [Cn(Bim)2-2Br, n?=?12, 14, 16] and their corresponding monomers [CnmimBr, n?=?12, 14, 16] were synthesized and characterized. The phase behavior and solubilization of microemulsion systems containing Cn(Bim)2-2Br/butan-1-ol/octane/brine as well as microemulsion systems containing CnmimBr/butan-1-ol/octane/brine were studied and compared. The Cn(Bim)2-2Br-based microemulsion systems have greater solubilization ability than that of the corresponding mono surfactants CnmimBr-based systems. As the carbon chain lengths of the surfactants [Cn(Bim)2-2Br and CnmimBr] increase, the mass fraction of the alcohol in the interfacial layer A S would decrease, whereas the solubilization ability (SP*) would increase. The maximum solubilization ability (SP*) of the two microemulsion systems was attained when the oil/water mass ratio (α) approaches 0.5. The solubilization ability of both microemulsion systems would increase with increasing NaCl concentrations in aqueous phase. In Cn(Bim)2-2Br-based microemulsion systems, the alcohol is significantly more soluble in aqueous phase than in the oleic phase. And it was noted that the alcohol is more soluble in Cn(Bim)2-2Br-based systems than in CnmimBr-based systems in both aqueous and oleic phases.  相似文献   

20.
A W/O microemulsion of Tween‐80‐Span‐80/n‐butylalcohol/ethyl‐oleate/H2O to envelop insulin (INS) was prepared. In order to obtain the maximum solved water, the components of microemulsion to envelop INS were chosen with the pseudo‐ternary phase diagram and the influences of temperature, salinity as well as the pH on microemulsion areas also were investigated. To test the properties of the microemulsion, the conductance was used to divide O/W, W/O and BC regions, the dynamic light scattering to evaluate the particle diameters of microemulsion, the 125I isotope tracing method to measure the release rate of INS loaded in W/O microemulsion, and the growth inhibitory effect test to appraise the cytotoxicity on human normal cells. Results show that W/O microemulsion forms when water content below 50% in the microemulsion system. The microemulsion region decreases slightly with the increase of temperature, salinity and the decrease of pH. However, the viscosity measurements along certainly selected dilution lines to the microemulsion indicate that no phase invert occurred. Diameter of microemulsion particle increases with the addition of INS, and the increase is sharp in the first 5 days then very slightly at 68.6 nm within a month. The INS loaded W/O microemulsion possesses eminent sustaining release efficiency and the cytostatic as well as cytotoxic assays illustrate that the microemulsion can be used as drug delivery at small dosage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号