首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We consider steady, two-dimensional motions of an incompressible, Newtonian fluid flowing under gravity down an inclined channel. If the bottom of the channel is flat, the flow is the classical Poiseuille-Nusselt flow and the free surface is then a plane parallel to the bottom. Motivated by the recent experimental and numerical studies of Pritchard, Scott & Tavener, we look at bottom configurations which possess some localized, non-uniform structure. We present an existence theory for steady, highly viscous flow over such configurations. An important consequence of our theory is that the steady flows whose existence is established decay exponentially rapidly to the unperturbed Poiseuille-Nusselt flow away from the local variation in the channel bottom profile.  相似文献   

2.
This paper mainly concerns the mathematical justification of a viscous compressible multi-fluid model linked to the Baer-Nunziato model used by engineers, see for instance Ishii (Thermo-fluid dynamic theory of two-phase flow, Eyrolles, Paris, 1975), under a “stratification” assumption. More precisely, we show that some approximate finite-energy weak solutions of the isentropic compressible Navier–Stokes equations converge, on a short time interval, to the strong solution of this viscous compressible multi-fluid model, provided the initial density sequence is uniformly bounded with corresponding Young measures which are linear convex combinations of m Dirac measures. To the authors’ knowledge, this provides, in the multidimensional in space case, a first positive answer to an open question, see Hillairet (J Math Fluid Mech 9:343–376, 2007), with a stratification assumption. The proof is based on the weak solutions constructed by Desjardins (Commun Partial Differ Equ 22(5–6):977–1008, 1997) and on the existence and uniqueness of a local strong solution for the multi-fluid model established by Hillairet assuming initial density to be far from vacuum. In a first step, adapting the ideas from Hoff and Santos (Arch Ration Mech Anal 188:509–543, 2008), we prove that the sequence of weak solutions built by Desjardins has extra regularity linked to the divergence of the velocity without any relation assumption between λ and μ. Coupled with the uniform bound of the density property, this allows us to use appropriate defect measures and their nice properties introduced and proved by Hillairet (Aspects interactifs de la m’ecanique des fluides, PhD Thesis, ENS Lyon, 2005) in order to prove that the Young measure associated to the weak limit is the convex combination of m Dirac measures. Finally, under a non-degeneracy assumption of this combination (“stratification” assumption), this provides a multi-fluid system. Using a weak–strong uniqueness argument, we prove that this convex combination is the one corresponding to the strong solution of the multi-fluid model built by Hillairet, if initial data are equal. We will briefly discuss this assumption. To complete the paper, we also present a blow-up criterion for this multi-fluid system following (Huang et al. in Serrin type criterion for the three-dimensional viscous compressible flows, arXiv, 2010).  相似文献   

3.
Noether's theorem and Noether's inverse theorem for mechanical systems with gauge-variant Lagrangians under symmetric infinitesimal transformations and whose motion is described by quasi-coordinates are established. The existence of first integrals depends on the existence of solutions of the system of partial differential equations — the so-called Killing equations. Non-holonomic mechanical systems are analysed separately and their special properties are pointed out. By use of this theory, the transformation which corresponds to Ko Valevskaya first integral in rigid-body dynamics is found. Also, the nature of the energy integral in non-holonomic mechanics is shown and a few new first integrals for non-conservative problems are obtained. Finally, these integrals are used in constructing Lyapunov's function and in the stability analyses of nonautonomous systems. The theory is based on the concept of a mechanical system, but the results obtained can be applied to all problems in mathematical physics admitting a Lagrangian function.  相似文献   

4.
The retarded histories of unsteady plane parallel (Poiseuille) flows of Simple Fluids with Fading Memory between two parallel plates of infinite extent at a finite distance apart are shown to be admissible, in the sense that they satisfy the equations of motion at arbitrary time t = 0 to any order of approximation in the retardation parameter according to the scheme of approximation of Coleman & Noll [2]. The result obtained by Coleman & Mizel [6] for second-order fluids is reinterpreted in the above context.  相似文献   

5.
In this paper, we study the global subsonic irrotational flows in a multi-dimensional (n ≥ 2) infinitely long nozzle with variable cross sections. The flow is described by the inviscid potential equation, which is a second order quasilinear elliptic equation when the flow is subsonic. First, we prove the existence of the global uniformly subsonic flow in a general infinitely long nozzle for arbitrary dimension with sufficiently small incoming mass flux and obtain the uniqueness of the global uniformly subsonic flow. Then we show that there exists a critical value of the incoming mass flux such that a global uniformly subsonic flow exists uniquely, provided that the incoming mass flux is less than the critical value. This gives a positive answer to the problem of Bers on global subsonic irrotational flows in infinitely long nozzles for arbitrary dimension (Bers in Surveys in applied mathematics, vol 3, Wiley, New York, 1958). Finally, under suitable asymptotic assumptions of the nozzle, we obtain the asymptotic behavior of the subsonic flow in far fields by means of a blow-up argument. The main ingredients of our analysis are methods of calculus of variations, the Moser iteration techniques for the potential equation and a blow-up argument for infinitely long nozzles.  相似文献   

6.
This paper is dedicated to the study of viscous compressible barotropic fluids in dimension N ≧ 2. We address the question of the global existence of strong solutions for initial data close to a constant state having critical Besov regularity. First, this article shows the recent results of Charve and Danchin (Arch Ration Mech Anal 198(1):233–271, 2010) and Chen et al. (Commun Pure Appl Math 63:1173–1224, 2010) with a new proof. Our result relies on a new a priori estimate for the velocity that we derive via the intermediary of the effective velocity, which allows us to cancel out the coupling between the density and the velocity as in Haspot (Well-posedness in critical spaces for barotropic viscous fluids, 2009). Second, we improve the results of Charve and Danchin (2010) and Chen et al. (2010) by adding as in Charve and Danchin (2010) some regularity on the initial data in low frequencies. In this case we obtain global strong solutions for a class of large initial data which rely on the results of Hoff (Arch Rational Mech Anal 139:303–354, 1997), Hoff (Commun Pure Appl Math 55(11):1365–1407, 2002), and Hoff (J Math Fluid Mech 7(3):315–338, 2005) and those of Charve and Danchin (2010) and Chen et al. (2010). We conclude by generalizing these results for general viscosity coefficients.  相似文献   

7.
Block generalized inverses   总被引:3,自引:0,他引:3  
The existence of the Moore-Penrose inverse is discussed for elements of a *-regular ring R. A technique is developed for computing conditional and reflexive inverses for matrices in R2×2, which is then used to calculate the Moore-Penrose inverse for these matrices. Several applications are given, generalizing many of the classical results; in particular, we shall emphasize the cases of bordered matrices, Schur complements, block-rank formulae and EP elements.  相似文献   

8.
The aim of this work is to give a direct and constructive proof of existence and uniqueness of a global solution to the equations of age-dependent population dynamics introduced and considered by M. E. Gurtin & R. C. MacCamy in [3]. The linear theory was developed by F. R. Sharpe & A. J. Lotka [10] and A. G. McKendrick [8] (see also [1], [9]) and extended to the nonlinear case by M. E. Gurtin & R. C. MacCamy in [3] (see also [4] [5] [6]). In [3], the key of the proof of existence and uniqueness was to reduce the problem to a pair of integral equations. In fact, as we shall see, the problem can also be solved by a simple fixed point argument. To outline more clearly the ideas of the proof, we will first discuss the setting and the resolution of the linear case, and then we will generalize the results of [3].  相似文献   

9.
We consider the three-dimensional motion of a viscoelastic liquid occupying all of space. The constitutive law is assumed to be of the form suggested by Kaye [13] and Bernstein, Kearsley & Zapas [2]. An existence and uniqueness result for solutions of the initial value problem on sufficiently short time intervals is proved using Kato's theory of quasilinear hyperbolic equations.Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This material is based upon work supported by the National Science Foundation under Grants Nos. MCS-8210950 and MCS-8215064.  相似文献   

10.
We establish existence, uniqueness, convergence and stability of solutions to the equations of steady flows of fibre suspension flows. The existence of a unique steady solution is proven by using an iterative scheme. One of the restrictions imposed on the data confirms a well known fact proven in Galdi and Reddy (J Non-Newtonian Fluid Mech 83:205–230, 1999), Munganga and Reddy (Math Models Methods Appl Sci 12:1177–1203, 2002) and Munganga et al. (J Non-Newtonian fluid Mech 92:135–150, 2000) that the particle number N p must be less than 35/2. Exact solutions are calculated for Couette and Poiseuille flows. Solutions of Poiseuille flows are shown to be more accurate than those of Couette flow when a time perturbation is considered.  相似文献   

11.
12.
We prove a blow-up criterion in terms of the upper bound of (ρ, ρ −1, θ) for a strong solution to three dimensional compressible viscous heat-conductive flows. The main ingredient of the proof is an a priori estimate for a quantity independently introduced in Haspot (Regularity of weak solutions of the compressible isentropic Navier–Stokes equation, arXiv:1001.1581, 2010) and Sun et al. (J Math Pure Appl 95:36–47, 2011), whose divergence can be viewed as the effective viscous flux.  相似文献   

13.
We consider Fisher-KPP-type reaction–diffusion equations with spatially inhomogeneous reaction rates. We show that a sufficiently strong localized inhomogeneity may prevent existence of transition-front-type global-in-time solutions while creating a global-in-time bump-like solution. This is the first example of a medium in which no reaction–diffusion transition front exists. A weaker localized inhomogeneity leads to the existence of transition fronts, but only in a finite range of speeds. These results are in contrast with both Fisher-KPP reactions in homogeneous media as well as ignition-type reactions in inhomogeneous media.  相似文献   

14.
We prove rather general L bounds for hydrodynamical fields in terms of weighted L norms of the kinetic density. We use these estimates to prove L bounds and uniqueness for the solution of the BGK Equation, which is a simple relaxation model introduced by Bhatnagar, Gross & Krook to mimic Boltzmann flows.  相似文献   

15.
Poiseuille flows in infinite cylindrical pipes, in spite of their enormous simplicity, have a main role in many theoretical and applied problems. As is well known, the Poiseuille flow is a stationary solution of the Stokes and the Navier-Stokes equations with a given constant flux. Time-periodic flows in channels and pipes have a comparable importance. However, the problem of the existence of time-periodic flows in correspondence to any given time-periodic total flux, is still an open problem. A solution is known only in some very particular cases, for instance, the Womersley flows. Our aim is to solve this problem in the general case. The above existence result opens the way to further investigations. As an example of this possibility we consider the extension of the classical Leray's problem for Poiseuille flows to arbitrary time-periodic flows. Dedicated to Louis Nirenberg on the occasion of his 80th birthday  相似文献   

16.
The behavior of center-indices, as introduced by J. Mallet-Paret & J. Yorke, is analyzed for two-parameter flows. The integer sum of center-indices along a one-dimensional curve in parameter space is called the H-index. A nonzero H-index implies global Hopf bifurcation. The index H is not a homotopy invariant. This fact is due to the occurrence of stationary points with an algebraically double eigenvalue zero, which we call B-points. To each B-point we assign an integer B-index, such that the H-index relates to the B-indices by a formula such as occurs in the calculus of residues.This formula is easily applied to study global bifurcation of periodic solutions in diffusively coupled two-cells of chemical oscillators and to treat spatially heterogeneous time-periodic oscillations in porous catalysts.Dedicated to the memory of Charlie Conley  相似文献   

17.
 To describe the flows of fluids over a wide range of pressures, it is necessary to take into account the fact that the viscosity of the fluid depends on the pressure. That the viscosity depends on the pressure has been verified by numerous careful experiments. While the existence of solutions local-in-time to the equations governing the flows of such fluids are available for small, special data and rather unrealistic dependence of the viscosity on the pressure, no global existence results are in place. Our interest here is to establish the existence of weak solutions for spatially periodic three-dimensional flows that are global in time, for a large class of physically meaningful viscosity-pressure relationships. (Accepted May 1, 2002) Published online November 15, 2002 Communicated by S. S. ANTMAN  相似文献   

18.
We study a quasilinear parabolic equation of forward–backward type in one space dimension, under assumptions on the nonlinearity which hold for a number of important mathematical models (for example, the one-dimensional Perona–Malik equation), using a degenerate pseudoparabolic regularization proposed in Barenblatt et al. (SIAM J Math Anal 24:1414–1439, 1993), which takes time delay effects into account. We prove existence and uniqueness of positive solutions of the regularized problem in a space of Radon measures. We also study qualitative properties of such solutions, in particular concerning their decomposition into an absolutely continuous part and a singular part with respect to the Lebesgue measure. In this respect, the existence of a family of viscous entropy inequalities plays an important role.  相似文献   

19.
This paper treats the hyperbolic-elliptic system of two conservation laws which describes the dynamics of an elastic material having a non-monotone strain-stress function. FollowingAbeyaratne &Knowles, we propose a notion of admissible weak solution for this system in the class of functions of bounded variation. The formulation includes an entropy inequality, a kinetic relation (imposed along any subsonic phase boundary) and an initiation criterion (for the appearance of new phase boundaries). We prove theL 1-continuous dependence of the solution to the Riemann problem. Our main result yields the existence and the stability of propagating phase boundaries. The proofs are based onGlimm's scheme and in particular on the techniques ofGlimm andLax. In order to deal with the kinetic relation, we prove a result of pointwise convergence of the phase boundary.  相似文献   

20.
This paper is concerned with the large time behavior of solutions to the LifschitzSlyozovWagner (LSW) system of equations. Point-wise in time upper and lower bounds on the rate of coarsening are obtained for solutions with fairly general initial data. These bounds complement the time averaged upper bounds obtained by Dai and Pego, and the point-wise in time upper and lower bounds obtained by Niethammer and Velasquez for solutions with initial data close to a self-similar solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号