首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lactobacilli have several attributes that provide health benefits to the host. The aim of this study was to screen indigenous lactobacilli from human gut and fermented foods for such attributes as production of β- and α-galactosidase and also their ability to reduce serum cholesterol. Lactobacilli were cultured on MRS broth and β-galactosidase activity was determined using o-nitrophenyl-β-D-galactopyranoside (ONPG) as a substrate. Three isolates Lactobacillus fermentum GPI-3 and L. fermentum GPI-6 and Lactobacillus salivarius GPI-1(S) showed better β-galactosidase activity than the standard strains Lactobacillus rhamnosus GG (LGG) and Lactobacillus plantarum ATCC 8014. The isolates showed variability in assimilating cholesterol during growth. Several isolates showed excellent cholesterol-lowering ability compared to standard strains LGG and L. plantarum ATCC 8014. Isolate L. rhamnosus SCB being the highest acid producer (pH 4.38) also showed the highest cholesterol reduction compared to other strains including standard strains. The ability of these isolates to produce α-galactosidase was also studied and the maximum α-galactosidase activity was found in isolate L. salivarius GPI-1(S) followed by L. fermentum FA-5 and Lactobacillus helveticus FA-7. This study therefore reports Lactobacillus isolates that have superior probiotic properties when compared to the standard strains; hence, they could be considered as potential probiotic strains, which can provide health benefits to the Indian population.  相似文献   

2.
In this study, we synthesized tungsten oxide (WO3) nanoplates, both crystallographic phases and the morphology of the samples were determined by powder x-ray diffraction and the scanning electron microscopy, respectively. The obtained data clarified that, the all prepared WO3·H2O samples were composed of large quantity of nanoplates. The cytotoxicity patterns of nanoplates were checked on both normal and cancer mammalian cell lines. Both nanoplates cytotoxicity did not exceed the 50 % inhibitory concentration (IC50) on the all normal tested cells even by using concentrations up to 1 mg/ml. In addition, orthorhombic tungsten oxide nanoplate was more potent against both Caco2 and Hela cells by showing inhibition percentages in cellular viability 64.749 and 72.27, respectively, and with cancer selectivity index reached 3.2 and 2.6 on both colon and cervix cancer, respectively. The anticancer effects of nanoplates were translated to alteration in both pro-apoptotic and anti-apoptotic genes expressions. Tungsten oxide nanoplates down regulated the expression of B cell lymphoma 2 (Bcl-2) and metalloproteinase-7 (MMP7) genes. In addition, orthorhombic tungsten oxide nanoplates showed more potentiation in IL2 and IL8 induction (40.43 pg/ml) and upregulation of TNF-α gene expression but with lower folds than Escherichia coli lipopolysaccharide (LPS) induction.  相似文献   

3.
This study aimed to investigate the inhibitory effects and mechanism of diaporthein B (DTB), a natural compound extracted from the fungus Penicillium sclerotiorum GZU-XW03-2, on human colon cancer cells. The inhibitory effect of DTB at different concentrations on the proliferation of colon cancer cells HCT116 and LOVO was detected at 24 and 48 h. The effect of cell migration and clone formation ability were detected by cell scratch and plate cloning experiments. Morphological changes were observed by Hoechst 33342 and Annexin-V/PI staining, and flow cytometry was used to detect the proportion of apoptotic cells. DTB significantly inhibited colon cancer cell proliferation, migration, and apoptosis in a dose-dependent manner without significant effects on normal colonic epithelial cells NCM460. The IC50 inhibition effect can be achieved after treatment with 3 μmol/L DTB for 24 h. Compared with the blank group, the migration and clonal-forming ability of colon cancer cells in the DTB group was significantly decreased (p < 0.01), while the apoptotic cells were significantly increased (p < 0.01) in a concentration-dependent manner. DTB can inhibit the proliferation and migration of human colon cancer cells HCT116 and LOVO and promote the apoptosis of human colon cancer cells.  相似文献   

4.
Maintaining a good proportion of gut probiotic bacteria is imperative to health. This may be achieved by consuming “prebiotics,” e.g., galacto‐oligosaccharides (GOS) that selectively promote probiotic bacteria, as they often uniquely express transporters for such oligosaccharides. Proteins are an important source for amino acids essential to probiotic bacteria. As most protein digestion products are absorbed in the small intestine, and there is great competition on the residuals by colonic bacteria, amino acids are scarce (<0.01 mM) in the colonic intercellular fluid, thus limiting probiotics' proliferation. However, no existing prebiotic product contains protein. Herein, we propose a new type of prebiotics: protein‐oligosaccharide conjugates. These conjugates were designed to be selectively targeted to probiotic bacteria in the colon, for enhancing their competitive advantage over undesired microorganisms. The approach was inspired by active targeting of chemotherapy, achieved by conjugating drugs to ligands, which selectively bind to proteins uniquely expressed on cancer cells; except here, we aimed to promote, not eliminate, the targeted cells. We formed these conjugates by mild Maillard‐reaction‐based covalent conjugation of GOS to lactoferrin hydrolysate (LFH), formed by peptic digestion, hence it resists gastric digestion. LFH‐GOS conjugates comprised 76% ± 1% LFH and 25% ± 4% GOS, and self‐assembled into 0.2 to 1.5‐μm microparticles. Most of the conjugates' protein content endured simulated gastrointestinal digestion, hence is expected to reach the colon. Remarkably, we found that the growth rate of a model probiotic bacterium (Lactobacillus casei) on the conjugates was double that on the unconjugated components (0.082 and 0.041 h?1, respectively). This study proposes the next generation of prebiotics.  相似文献   

5.
Probiotics with ability to produce conjugated linoleic acid (CLA) is considered as an additive health benefit property for its known role in colon cancer mitigation. The conversion involves the biohydrogenation of the unsaturated fatty acid into conjugated form. Probiotic strain Pediococcus spp. GS4 was efficiently able to biohydrogenate linoleic acid (LA) into its conjugated form within 48 h of incubation. Quantum of CLA produced with a concentration of 121 μg/ml and sustained cell viability of 8.94 log cfu/ml maximally. Moreover, antibacterial effect of LA on the strain ability for biohydrogenation was examined at different concentrations and concluded to have a direct relationship between LA and amount of CLA produced. The efficiency of the strain for CLA production at different pH was also estimated and found maximum at pH?6.0 with 149 μg/ml while this ability was reduced at pH?9.0 to 63 μg/ml. Sesame oil, which is rich in the triacylglycerol form of LA, was also found to act as a substrate for CLA production by Pediococcus spp. GS4 with the aid of lipase-catalyzed triacylglycerol hydrolysis and amount of CLA produced was 31 μg/ml at 0.2 % while 150 μg/ml at 1.0 % of lipolysed oil in skim milk medium. Conjugated form was analyzed using UV scanning, RP-HPLC, and GC-MS. This study also focused on the alternative use of lipolysed sesame oil instead of costly LA for biohydrogenation and could be a potential source for the industrial production of CLA.  相似文献   

6.
7.
Several Clostridium spp. were incubated in a nitrogen-free medium (non-growth medium) containing only butyric acid as a sole precursor for performing butanol production by non-growing cells. Non-growing cells of Clostridium spp., especially Clostridium beijerinckii TISTR 1461, could convert butyric acid to butanol via their sole solventogenic activity. This activity was further enhanced in the presence of glucose as a co-substrate. In addition to glucose, other monosaccharides (i.e., galactose and xylose) and disaccharides (i.e., maltose, sucrose, and lactose) could also be used as a co-substrate with butyric acid. Among the organic acids tested (i.e., formic, acetic, propionic, and butyric acids), only butyric and acetic acids were converted to butanol. This study has shown that it is possible to use the non-growing cells of Clostridium spp. for direct conversion of sugars and organic acids to biobutanol. With this strategy, C. beijerinckii TISTR 1461 produced 12 g/L butanol from 15 g/L glucose and 10 g/L butyric acid with a high butanol yield of 0.68 C-mol/C-mol and a high butanol ratio of 88 %.  相似文献   

8.
The synthesis and functional characterization of an antibiofilm exopolysaccharide (EPS) from a probiotic Enterococcus faecium MC13 were investigated. The temperature of 35 °C, pH of 6.5, and salinity of 1–2 % were found to be optimum for EPS production. The sucrose (30 g?l?1) and yeast extract (20 g?l?1) acted as suitable carbon and nitrogen sources, respectively, which strongly influenced EPS production with yield of 11.33 and 11.91 g?l?1. Based on the thin layer chromatography, EPS of E. faecium MC13 was found to be a heteropolysaccharide, composed of galactose and glucose sugar units with a molecular mass of 2.0?×?105?Da. Fourier transform infrared spectrum analysis of the EPS revealed many predominant functional groups including hydroxyl, carboxyl, and amide groups. EPS exhibited better emulsifying and flocculating activities which is relatively similar to those of commercial polysaccharides. In vitro antioxidant inspect of EPS showed lesser antioxidant activity than that of the control ascorbic acid. Thermal behavior of EPS was different from the other EPS produced by other lactic acid bacteria. In vitro antibiofilm assay of EPS exhibited significant biofilm inhibition, especially with Listeria monocytogenes. To the best of our knowledge, this is the first report on EPS of E. faecium with strong emulsifying and flocculating activities.  相似文献   

9.
Thirty-six lactic acid bacteria belong to Lactococcus, Lactobacillus, Enterococcus, and Pediococcus were isolated, and the spectrum of antifungal activity was verified against Fusarium oxysporum (KACC 42109), Aspergillus niger (KACC 42589), Fusarium moniliforme (KACC 08141), Penicillium chrysogenum (NII 08137), and the yeast Candida albicans (MTCC 3017). Three isolates, identified as Pediococcus pentosaceus (TG2), Lactobacillus casei (DY2), and Lactococcus (BSN) were selected further, and their antifungal compounds were identified by ESI-MS and HPLC analysis as a range of carboxylic acids along with some unidentified, higher molecular weight compounds. An attempt to check out the shelf life extension of wheat bread without fungal spoilage was performed by fermenting the dough with the Lactococcus isolate. Apart from growth in low pH and tolerance to bile salts, probiotic potential of these three isolates was further substantiated by in vitro screening methods that include transit tolerance to the conditions in the upper human gastrointestinal tract and bacterial adhesion capacity to human intestinal cell lines.  相似文献   

10.
11.
Column experiments were utilized to investigate the effects of nitrate injection on sulfate-reducing bacteria (SRB) inhibition and microbial enhanced oil recovery (MEOR). An indigenous microbial consortium collected from the produced water of a Brazilian offshore field was used as inoculum. The presence of 150 mg/L volatile fatty acids (VFA´s) in the injection water contributed to a high biological electron acceptors demand and the establishment of anaerobic sulfate-reducing conditions. Continuous injection of nitrate (up to 25 mg/L) for 90 days did not inhibit souring. Contrariwise, in nitrogen-limiting conditions, the addition of nitrate stimulated the proliferation of δ-Proteobacteria (including SRB) and the associated sulfide concentration. Denitrification-specific nirK or nirS genes were not detected. A sharp decrease in water interfacial tension (from 20.8 to 14.5 mN/m) observed concomitantly with nitrate consumption and increased oil recovery (4.3 % v/v) demonstrated the benefits of nitrate injection on MEOR. Overall, the results support the notion that the addition of nitrate, at this particular oil reservoir, can benefit MEOR by stimulating the proliferation of fortuitous biosurfactant-producing bacteria. Higher nitrate concentrations exceeding the stoichiometric volatile fatty acid (VFA) biodegradation demands and/or the use of alternative biogenic souring control strategies may be necessary to warrant effective SRB inhibition down gradient from the injection wells.  相似文献   

12.
Recombinant Escherichia coli cells harboring nitrilase from Alcaligenes faecalis were immobilized using tris(hydroxymethyl)phosphine (THP) as the coupling agent. The optimal pH and temperature of the THP-immobilized cells were determined at pH 8.0 and 55 °C. The half-lives of THP-immobilized cells measured at 35, 40, and 50 °C were 1800, 965, and 163 h, respectively. The concentration of R-mandelic acid (R-MA) reached 358 mM after merely 1-h conversion by the immobilized cells with 500 mM R,S-mandelonitrile (R,S-MN), affording the highest productivity of 1307 g L?1 day?1 and the space-time productivity of 143.2 mmol L?1 h?1 g?1. The immobilized cells with granular shape were successfully recycled for 60 batches using 100 mM R,S-MN as substrate at 40 °C with 64% of relative activity, suggesting that the immobilized E. coli cells obtained in this study are promising for the production of R-MA.  相似文献   

13.
From the aerial parts of Cymbidium ensifolium, three new dihydrophenanthrene derivatives, namely, cymensifins A, B, and C (1–3) were isolated, together with two known compounds, cypripedin (4) and gigantol (5). Their structures were elucidated by analysis of their spectroscopic data. The anticancer potential against various types of human cancer cells, including lung, breast, and colon cancers as well as toxicity to normal dermal papilla cells were assessed via cell viability and nuclear staining assays. Despite lower cytotoxicity in lung cancer H460 cells, the higher % apoptosis and lower % cell viability were presented in breast cancer MCF7 and colon cancer CaCo2 cells treated with 50 µM cymensifin A (1) for 24 h compared with the treatment of 50 µM cisplatin, an available chemotherapeutic drug. Intriguingly, the half-maximum inhibitory concentration (IC50) of cymensifin A in dermal papilla cells at >200 µM suggested its selective anticancer activity. The obtained information supports the further development of a dihydrophenanthrene derivative from C. ensifolium as an effective chemotherapy with a high safety profile for the treatment of various cancers.  相似文献   

14.
Medium-chain fatty acids (MCFA) are saturated monocarboxylic acids and can be used as antimicrobials, corrosion inhibitors, precursors in biodiesel, and bioplastic production. In the present study, MCFA production was evaluated with acetate and ethanol using the bacteria Clostridium kluyveri. Effects of substrate, electron donor, and methane inhibitor on MCFA production were evaluated. Bacteria successfully converted the ethanol and acetate to butyrate (C4), caproate (C6), and caprylate (C8) by chain elongation process. The highest concentrations of butyrate (4.6 g/l), caproate (3.2 g/l), and caprylate (0.5 g/l) were obtained under methane inhibition conditions than other conditions. The productions of butyrate and caproate were 1.6 and 1.48 times higher under methane inhibition conditions, respectively. Results denoted that the bacteria C. kluyveri can be used for conversion of acetate and ethanol into useful products like butyrate and caproate.  相似文献   

15.
The study was aimed at evaluating the probiotic potential of indigenous autochthonous Lactobacillus rhamnosus strains isolated from infant feces and vaginal mucosa of healthy female. The survival of the selected strains and the two reference strains (L. rhamnosus GG and L. casei Actimel) was 67–81 % at pH 2 and 70–80 % after passage through the simulated gastrointestinal fluid. These strains are able to grow in the presence of 4 % bile salt, 10 % NaCl, and 0.6 % phenol. The cell surface of L. rhamnosus strains is hydrophilic in nature as revealed by bacterial adhesion to hydrocarbons (BATH) assay. Despite this, L. rhamnosus strains showed mucin adherence, autoaggregation and coaggregation properties that are strain-specific. In addition, they produce bile salt hydrolase (BSH) and β-galactosidase activities. L. rhamnosus strains exhibit antimicrobial activity against food spoilage organisms and gastrointestinal pathogens, as well as Candida and Aspergillus spp. L. rhamnosus strains have similar antibiotic susceptibility pattern, and resistance to certain antibiotics is intrinsic or innate. The strains are neither haemolytic nor producer of biogenic amines such as histamine, putrescine, cadaverine and tyramine. Lyophilized cells of L. rhamnosus Fb exhibited probiotic properties demonstrating potential of the strain for technological suitability and in the preparation of diverse probiotic food formulations.  相似文献   

16.
Frutalin is a plant lectin with beneficial immunobiological action, although the access to its active form is still restricted. Moreover, there is a knowledge gap on isoform activity and glycosylation impact on its bioactivity, and recombinant production protocols were seen as ineffective. Here, a simpler and faster production and purification protocol was developed, attaining a yield of purified frutalin 3.3-fold higher than that obtained previously. Hemagglutination assays confirmed that this frutalin isoform could not agglutinate rabbit erythrocytes, while maintaining the native tetrameric structure, as indicated by DLS analysis, and strong interaction with methyl-alpha-galactose, in fluorescence spectroscopy studies. The cytotoxicity of the recombinant frutalin isoform was shown in a broad panel of human cancer cells: colon (HCT116), melanoma (A375), triple-negative breast cancer (MDA-MB-231), and ovarian (IGROV-1). Treatment with 8.5–11.8 μM TrxFTL reduced proliferation of all cancer cells to half in 48 h. This anti-proliferative effect encompasses the p53 pathway since it was significantly reduced in p53-null colon cancer cells (HCT116 p53−/−; GI50 of 25.0 ± 3.0 μM), when compared to the isogenic p53-positive cells (HCT116 p53+/+; GI50 of 8.7 ± 1.8 μM; p < 0.002). This recombinantly produced frutalin isoform has relevant cytotoxic effect and its biological activity is not dependent on glycosylation. The developed E. coli production and purification protocol generates high yield of non-glycosylated frutalin isoform with potent cytotoxic activity, enabling the development of novel anticancer p53-targeting therapies.  相似文献   

17.
Lactobionic acid is a relatively new product derived from lactose oxidation, with high potential applications as a bioactive compound. Conducted experiments confirmed that both the time and temperature influenced the production of lactobionic acid during bioconversion of lactose using the Pseudomonas taetrolens bacteria. The study also investigated the effect of inoculum concentration on the production of lactobionic acid as a result of oxidation of whey-derived lactose. The highest concentration of lactobionic acid during oxidation of whey-derived lactose at a temperature of 30 °C by microorganisms. P. taetrolens was obtained during 50-h oxidation of the medium, which contained 25 % addition of the inoculum, in which the count of live cells was 2.85?×?109 CFU/ml.  相似文献   

18.
The purpose of this study was to investigate, by use of the agar well diffusion method, the ability of cold-water and hot-water extracts of Petroselinum crispum leaves to inhibit bacteria isolated from patients with burns infections. The results revealed that 250 mg/ml of the hot-water extract was the more effective inhibitor of the growth of P. aeruginosa. The inhibition zone diameter of 29.667 mm was significantly different (P < 0.05) from that for nitrofurantoin, chosen as positive control. From the overall results obtained it is evident that the plant screened has anti-bacterial activity against some bacteria associated with burns infections.  相似文献   

19.
Cambodia has geological environments conducive to generation of high-arsenic groundwater and people are at high risk of chronic arsenic exposure. The aims of this study are to investigate the concentration of total arsenic and to isolate and identify arsenic-resistant bacteria from selected locations in Kandal Province, Cambodia. The INAA technique was used to measure the concentration of total arsenic in soils. The arsenic concentrations in soils were above permissible 5 mg/kg, ranging from 5.34 to 27.81 mg/kg. Bacteria resistant to arsenic from two arsenic-contaminated wells in Preak Russey were isolated by enrichment method in nutrient broth (NB). Colonies isolated from NB was then grown on minimal salt media (MSM) added with arsenic at increasing concentrations of 10, 20, 30, 50, 100 and 250 ppm. Two isolates that can tolerate 750 ppm of arsenic were identified as Enterobacter agglomerans and Acinetobacter lwoffii based on a series of biochemical, physiological and morphological analysis. Optimum growth of both isolates ranged from pH 6.6 to 7.0 and 30–35 °C. E. agglomerans and A. lwoffii were able to remove 66.4 and 64.1 % of arsenic, respectively at the initial concentration of 750 ppm, within 72 h of incubation. Using energy dispersive X-ray technique, the percentage of arsenic absorbed by E. agglomerans and A. lwoffii was 0.09 and 0.15 %, respectively. This study suggested that arsenic-resistant E. agglomerans and A. lwoffii removed arsenic from media due to their ability to absorb arsenic.  相似文献   

20.
A series of bengamide E analogues were prepared from the corresponding polyketide chain and amino acids via amide coupling reactions. Opening of the polyketide chain lactone ring with α-aminolactams was successfully achieved under microwave irradiation in the presence of sodium 2-ethyl hexanoate. A cytotoxic activity evaluation against a panel of cancer cell lines (KB, HepG-2, Lu-1, MCF-7, HL-60 and Hela) indicated that the 2′R analogues were generally more cytotoxic than the 2′S analogues. Additionally, several analogues exhibited selective inhibition against various cancer cell lines: compounds 32a and 32b selectively inhibited MCF-7 cells, while 33b and 35b were more sensitive toward Lu-1 and HepG-2, respectively. Notably, some of the synthetic analogues possess cytotoxic activities with IC50 values less than 1 µM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号