首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A novel dielectric-barrier-discharge (DBD) loop reactor was designed for the efficient degradation of cyanide anion (CN?) in water. The circulation of cyanide water as a falling film through plasma gas discharge zone enhanced gas–liquid mass and energy transfer and induced formation of H2O2 which was associated with the efficient destruction of CN?. It was observed that among different discharge gases, the CN? degradation rate decreased in the order of Ar > air > H2/air mixture. Depending on discharge voltage, the treatment time for complete removal of 100 ppm CN? in this DBD loop reactor is in the range 120–300 min. The dose of Cu2+ catalyst in combination with in situ production of H2O2 enhanced the destruction of CN? apparently in this DBD loop reactor. The treatment time for complete degradation of 100 ppm CN? decreased from 180 min with Ar DBD discharge alone to 40 min with 40 mg/L dose of Cu2+ ion in water, making it an efficient means to degrade cyanide water.  相似文献   

2.
A dielectric barrier discharge plasma reactor has been designed and constructed. The space discharge regime has been implemented. The reactor operating conditions for the desired reaction have been calculated using the dissociation of water molecules as a model reaction. The operating conditions have been selected for the dissociation of water vapor via excitation of vibrational levels of the molecule by a single electron impact.  相似文献   

3.
《Fluid Phase Equilibria》1999,154(2):301-310
Isobaric vapor–liquid equilibrium values at 1 atm pressure were measured for the systems 1-propanol–water–potassium acetate and 2-propanol–water–potassium acetate under fixed salt mole fractions using a modified Othmer recirculation still. A modified Furter equation, ln(αs/α)=k1z+k2z2, was proposed for correlating the effect of dissolved salts on vapor–liquid equilibrium (VLE). The modified equation contains two parameters that are applicable to the entire salt/solvent composition range. Correlation of VLE for 15 mixed-solvent electrolyte systems was made by means of the proposed modified equation with better results than those obtained from the original equation.  相似文献   

4.
The intensity distribution of the Cr–I 428.97 nm resonant and 520.60 nm non-resonant lines was studied as a function of the distance from the anode in a low pressure DC-GD fitted with a Cr metal cathode and operated in various gas atmospheres, including helium (P = 4 mbar), ambient air and water vapor (P = 0.8 mbar). In the helium and ambient air atmospheres, the intensity peaks occurred in the near cathode region (cathode glow) in accordance with the literature. When operated in water vapor, however, the Cr–I 428.97 nm resonant line disappeared, whereas the intensity of the non-resonant 520.60 nm line was enhanced. This result may be attributed to resonant energy transfer collisions taking place between OH radicals excited to the first vibrational level and Cr*428 atoms excited to the z7P0 upper level of the 428.97 nm transition. The similar gas phase composition encountered with a DC electrolyte cathode atmospheric pressure glow discharge (ELCAD) and the Cr metal cathode GD operating under a low pressure of water vapor suggests that the zero intensity of the Cr resonance lines (428.97 nm, 360.53 nm) produced in the ELCAD may be attributed to similar energy transfer processes. Our results show that the intensity of the Cr–I 520.60 nm line can be used for analytical purposes in the ELCAD.  相似文献   

5.
《Fluid Phase Equilibria》1999,161(2):295-304
The air/water partition coefficient (Kaw) and Henry's constant (H) were measured by our own modified EPICS (Equilibrium Partitioning in Closed System) method, which uses two bubble columns. This method gives accurate Kaw data much more rapidly than other methods. In order to establish this method, the influence of airflow rate and the volume ratios of water in two columns to partition coefficient were carefully examined. Then we have measured Kaw for some n-alkanes, aromatic and chlorinated compounds. The experimental results of our modified EPICS method agreed very well with literature values. Besides the relationships between Kaw and molar volume, vapor pressure and water solubility were also analyzed.  相似文献   

6.
FTIR transmission spectroscopy, along with gravimetric analysis and scanning electron microscopy (SEM), have been used to investigate the structure of water sorbed in PP/EVOH films. Aims of this investigation were to determine water content spectroscopically, to elucidate the different types of interaction that water molecules form with the macromolecular network and their change as a function of blend composition, morphology and the state (gaseous or liquid) of the water contacting with the PP/EVOH system at equilibrium.The extinction coefficients (ε) of the water sensitive bands (νOH, δOH, 2150 and 700 cm−1) are proportional to the EVOH content. These results are explained by the phase separation between PP and EVOH and the increasing size of the dispersed EVOH spheres with the EVOH content. Moreover, the ε values suggest that when the films are in contact with water vapor, most of the water sorbed locates around the hydrogen bonding sites of the polymer although the effective hydration region around the EVOH residues should be much larger than the primary hydration region. Besides, “bulk water”, generally categorized as “free water”, is lacking in the polymer blends under our experimental conditions. When they contact with liquid water both the water uptake and the ε values are changed, but these variations are not large enough to assume the formation of “bulk water”. Band decomposition of the O-H stretching vibration (νOH) on the basis of the four-state model supports the assumption of the absence of “water-rich domains”, regardless of the blend composition or whether the PP/EVOH film contacts with liquid water or water vapor. Besides, either in contact with water vapor or liquid water, the more hydrophobic mixtures (90/10) show the greatest effect of perturbation with respect to pure water for the “weaker hydrogen bonded” water. Conversely, the interactions between the “strongly bound” water and OH groups in the EVOH chains become stronger with increasing hydrophilicity of the blends and this type of water has a greater plasticising efficiency. Furthermore, these structural changes are greater for liquid water than for water vapor and this trend is equally observed for mixtures of different hydrophilicity.  相似文献   

7.
The physico-chemical effects caused by supercritical CO2 (ScCO2) exposure is one of the leading problems for CO2 storage in deep coal seams as it will significantly alter the flow behaviors of gases. The main objective of this study was to investigate the effects of ScCO2 injection on diffusion and adsorption kinetics of CH4, CO2 and water vapor in various rank coals. The powdered coal samples were immersed in ScCO2 for 30 days using a high-pressure sealed reactor. Then, the diffusion and adsorption kinetics of CH4, CO2 and water vapor in the coals both before and after exposure were examined. Results indicate that the diffusivities of CH4 and CO2 are significantly increased due to the combined matrix swelling and solvent effect caused by ScCO2 exposure, which may induce secondary faults and remove some volatile matters that block the pore throats. On the other hand, the diffusivities of water vapor are reduced due to the elimination of surface functional groups with ScCO2 exposure. It is concluded that density of the surface function groups is the controlling factor for water vapor diffusion rather than the pore properties. The unipore model and pseudo-first-order equation can simulate the diffusion and adsorption kinetics of CH4 and CO2 very well, but the unipore model is not capable of well describing water vapor diffusion. The effective diffusivity (De), diffusion coefficient (D) and adsorption rates (k1) of CH4 and CO2 are significantly increased after ScCO2 exposure, while the values of water vapor are decreased notably. Thus, the injection of ScCO2 will efficiently improve the transport properties of CH4 and CO2 but hinder the movement of water molecules in coal seams.  相似文献   

8.
Nitrogen fixed in the form of nitrogen oxides is essential to produce fertilizers and many other chemical products, which is vital to sustain life. The performance of a milli-scale gliding arc reactor operated under atmospheric pressure has been studied for nitrogen oxides synthesis. In this work, the electrical and process parameters of the gliding arc reactor, such as frequency, pulse width, amplitude and feed ratio were investigated respectively. The experiments were performed at 1 L/min in a gliding arc discharge regime. The highest concentration of NOx was found to be ~1 % at energy consumption of 10 kWh/kg of NOx. Increase in frequency, pulse width and amplitude resulted in an increased specific energy input and NOx concentration. The feed ratio (N2/O2) affected the amount of NO and NO2 produced, which gives possibility to independently obtain the desired ratio of NO/NO2 by tuning the electrical and process parameters.  相似文献   

9.
The release of mine effluents can have a damaging impact on receiving water bodies. Therefore, treatment of mine waters before discharge is imperative. A novel biological SO42 - {\hbox{SO}}_4^{2 - } removal technology has been developed whereby the degradation/fermentation products of grass cellulose, volatile fatty acids (VFA), function as the electron donors and SO42 - {\hbox{SO}}_4^{2 - } as the electron acceptor. The aim of the study presented here was to elucidate the interactions between the cellulose degradation rate, the chemical oxygen demand (COD), VFA production and its/utilisation rate as well as the sulphate reduction rate. To this end, two stirred batch reactors were operated: a test and a control reactor. The results showed that high COD and VFA concentrations were achieved after cellulose degradation, which resulted in a rapid decrease in the SO42 - {\hbox{SO}}_4^{2 - } concentration in the test reactor. The VFA results indicated that propionic and butyric acids were preferentially utilised, producing acetate. In the control reactor, the VFA and the COD production increased initially at the same rate, followed later by a decrease at a similar rate. These results suggest that the degradation products formed were utilised by the methanogenic bacteria to produce methane rather than by the sulphate-reducing bacteria, since the control reactor contained no sulphate (Visser 1995). Furthermore, these results showed a clear relationship between the COD/VFA production and the SO42 - {\hbox{SO}}_4^{2 - } reduction in the test reactor and between the COD and VFA pattern in the control reactor.  相似文献   

10.
Radiochemical technique was used to investigate cryogenic chemical reaction. By introducing reactants of H and T into liquid 3H through 3He(n,p)T reaction, behaviors of H+T→HT and T+T→T2 were investigated under pressurized condition. Within saturated vapor pressure upto 0.61 Mpa, the isotope ratio of HT/T2 changed. It was suggested that the change of HT/T2 was attributed to bubble formation and chemical potential in liquid helium.  相似文献   

11.
The respective roles of short and long-life oxidant species in the degradation of model organic pollutants in water have been investigated in a gas–liquid gliding arc plasma reactor. Three different model pollutants were treated in two configurations: direct discharge mode and spatial post discharge mode. In each case the pollutants were classified according to their ease of removal, from easier to more difficult to remove. The results were as follows: phenol >> 1-heptanol >> pCBA. The removal mechanisms also are different depending on the characteristics of the pollutant treated. Phenol (100 % of phenol was removed for energy density = 1.20 × 105 J/L) was supposed to react strongly with NO2° radicals produced by the dissociation of N2O4 in liquid phase. The degradation of 1-heptanol would proceed by desorption of the liquid phase to the gas phase, where oxidation occurs due to the plasma active short-lived species. In the case of pCBA, oxidation occurs in the liquid solution, but the degradation is low because of its low reactivity with species such as ozone and °NO2 and insufficient production of OH° radicals in the solution.  相似文献   

12.
This paper deals with application of non-invasive electrical capacitance tomography to study the hydrodynamics of shallow bed bubble columns. Two bubble columns with different height to diameter ratio were used. Air–kerosene system that represents dielectric two-phase mixture was investigated. The ECT provided good measurement of the gas holdup at different gas velocities compared to the classical pressure measurements. The ECT was able to provide the gas hold up and the bubble velocities distribution across the column diameter at different gas velocities. The study revealed that spatial gas holdup and bubble velocity distributions are sharp with parabolic shape in the small bubble column (HD/DC = 5). However, in the large bubble column (HD/DC = 4) the gas holdup and bubble velocity profiles were flatter indicating improvement in the mixing homogeneity and leading to well-mixed reactor. 3D graphical visualization of the flow regimes and transition points were also examined using the ECT. In the small bubble column flow regimes were heterogeneous to slugs flow especially at high flow rate, resulted in downward flow near the walls and imperfect mixing.  相似文献   

13.
Zeck, S. and Knapp, H., 1986. Vapor—liquid and vapor—liquid—liquid phase equilibria of binary and ternary systems of nitrogen, ethene and methanol: experiment and data evaluation. Fluid Phase Equilibria, 26: 37–58.VLE and VLLE of three binary and one ternary system containing the components N2, C2H4 and CH3OH are investigated in a high-pressure phase equilibrium apparatus with vapor recirculation at temperatures 240 < T < 298 K and pressures 4 < p < 100 bar. Immiscibilities in the liquid phase are observed in the binary system C2H4CH3OH with a lower critical end point and in the ternary system N2C2H4CH3OH.The experimental results are reported and compared with the results of other investigators and of available correlations.  相似文献   

14.
Co-circulation of gas and liquid in a pipe can generate, depending on inlet conditions, various kinds of flow patterns. Few investigations have been performed on intermittent two-phase flows (slug flows) using classical techniques (optical probe, hot-wire anemonetry, etc.), because these techniques are difficult to apply in this flow regime. Here we show that nuclear magnetic resonance is a powerful technique to study such flows. The presented results deal with controlled isolated Taylor bubbles. In addition to a classical Pulsed Field Gradient Spin Echo (PFGSE), a magnetic field gradient was applied during the π/2)X radio frequency pulse, which produces a selective irradiation. Thus, cutting up of the flow into slices provides the longitudinal evolution of the liquid fraction and of the velocity probability distribution in the entire region perturbed by the Taylor bubble. The existence of a recirculatory flow under the Taylor bubble is clearly demonstrated.  相似文献   

15.
《中国化学快报》2023,34(7):107941
Researches have investigated the formation, transportation and spreading of bubble on solid surface with specific wettability. However, bubble transfer on wettability-heterogeneous surfaces has been rarely reported, which also plays significant role in water electrolysis, heat transfer, micro-bubble collection, etc. In this work, we carefully investigate the behavior of bubble transfer from the aerophobic or aerophilic region to the superaerophilic region through fabricating the wettability-heterogenous surfaces. Surface energy was elucidated to be transformed to the kinetic energy during bubble transfer process. Theoretical analysis on the average velocity of bubble transfer was consistent with the experimental results. The influence of wettability of solid substrate, bubble volume and superaerophilic stripe width on bubble transfer are carefully investigated. Moreover, wettability-heterogeneous surfaces were explored to be applied in micro-CO2 bubble collection and H2 bubble removement in water splitting.  相似文献   

16.
Carbon monoxide (CO) can be metabolized by a number of microorganisms along with water to produce hydrogen (H2) and carbon dioxide. National Renewable Energy Laboratory researchers have isolated a number of bacteria that perform this so-called water-gas shift reaction at ambient temperatures. We performed experiments to measure the rate of CO conversion and H2 production in a trickle-bed reactor (TBR). The liquid recirculation rate and the reactor support material both affected the mass transfer coefficient, which controls the overall performance of the reactor. A simple reactor model taken from the literature was used to quantitatively compare the performance of the TBR geometry at two different size scales. Good agreement between the two reactor scales was obtained.  相似文献   

17.
The effect of O2 and H2O vapor on the Nitric oxide (NO) removal rate, the NO2 generation rate and the discharge characteristics were investigated using the dielectric barrier discharge (DBD) reactor at 1 atm pressure and at room temperature (20°). The results showed that the O2 present in the flue gas always hampered the removal of NO and the generation of N2O, but that the O2 could enhance the generation of NO2 in the NO/N2/O2 mixtures. Furthermore, with the increase of oxygen, the average discharge current gradually decreases in the reactor. The H2O present in N2/NO hindered the removal of NO and the generation of NO2 but had no impact on the average discharge current in the reactor in the NO/N2/H2O mixtures in which the HNO2 and HNO3 was detected. The energy efficiency of the DBD used to remove the NO from the flue gas was also estimated.  相似文献   

18.
Cold atmospheric plasma is considered to be a promising approach for decontamination purposes, e.g. dyeing water decoloration. In order to better understand the complex mechanism of the plasma physics coupled with the plasma chemistry involved in the interaction of the polluted water with the discharge plasma, a novel approach was proposed to study the in situ oxidation process between the plasma and liquid phase in two dielectric barrier discharge (DBD) plasma reactors with different bottom shape (concave vs. plane), by using the planar laser induced fluorescence technique to visualize the process dynamics. Rhodamine B was employed as the tracer dye, which was gradually decomposed by the combined effect of the chemically active radicals (OH, O, H2O2, etc.) as well as the intense UV radiation in the DBD plasma process. The results showed that the DBD plasma filaments induced certain fluctuation on the Rhodamine B liquid layer, which accordingly intensified the mass transfer to a large extent thus accelerated the oxidation process. The comparison of the measured concentration fields in the two DBD plasma reactors illustrated that the DBD reactor #1 with concave bottom showed higher oxidation efficiency than the DBD reactor #2 with plane bottom. Additionally, the experiments demonstrated that the oxidation efficiency in the DBD plasma water treatment was much better than that in the reactor with pure oxidation by ozone gas, which can be further improved by injecting the additional oxygen gas bubbles into the liquid phase in the plasma reactor.  相似文献   

19.
This work demonstrates that diamond-like nano-carbons can be rapidly grown at atmospheric pressure and near ambient temperature in Ar gas bubble discharge in liquid ethanol. The method uses a discharge between point-to-plate electrodes immersed in ethanol, with plasma being generated inside Ar gas bubbles introduced through the needle electrode. The ethanol was dissociated at the liquid/gas interface into reactive species such as C2 and CH, which are the primary species responsible for diamond formation. A mixture of lonsdaleite nano-diamonds, amorphous carbon nano-spheres, and a graphitic carbon network, was formed. The rapid bubble movement distributes the reaction products almost immediately into the liquid phase, ensuring that nucleation of new material continues throughout the process. This simple, inexpensive and fast process avoids the elevated temperatures and extreme pressures of current methods.  相似文献   

20.
In the present review, the production of O radicals (oxygen atoms) in acoustic cavitation is focused. According to numerical simulations of chemical reactions inside a bubble using an ODE model which has been validated through studies of single-bubble sonochemistry, not only OH radicals but also appreciable amounts of O radicals are generated inside a heated bubble at the violent collapse by thermal dissociation of water vapor and oxygen molecules. The main oxidant created inside an air bubble is O radicals when the bubble temperature is above about 6500 K for a gaseous bubble. However, the concentration and lifetime of O radicals in the liquid water around the cavitation bubbles are unknown at present. Whether O radicals play some role in sonochemical reactions in the liquid phase, which are usually thought to be dominated by OH radicals and H2O2, should be studied in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号