首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We address the question of probing the supercurrents in superconducting (SC) samples on a local scale by performing scanning tunneling spectroscopy (STS) experiments with a SC tip. In this configuration, we show that the tunneling conductance is highly sensitive to the Doppler shift term in the SC quasiparticle (QP) spectrum of the sample, thus allowing the local study of the superfluid velocity. Intrinsic screening currents, such as those surrounding the vortex cores in a type II SC in a magnetic field, are directly probed. With Nb tips, the STS mapping of the vortices, in single crystal 2H-NbSe(2), reveals both the vortex cores, on the scale of the SC coherence length xi, and the supercurrents, on the scale of the London penetration length lambda. A subtle interplay between the SC pair potential and the supercurrents at the vortex edge is observed. Our results open interesting prospects for the study of screening currents in any superconductor.  相似文献   

2.
We performed the first scanning tunneling spectroscopy measurements on the pyrochlore superconductor KOs2O6 (T(c)=9.6 K) in both zero magnetic field and the vortex state at several temperatures above 1.95 K. This material presents atomically flat surfaces, yielding spatially homogeneous spectra which reveal fully gapped superconductivity with a gap anisotropy of 30%. Measurements performed at fields of 2 and 6 T display a hexagonal Abrikosov flux line lattice. From the shape of the vortex cores, we extract a coherence length of 31-40 A, in agreement with the value derived from the upper critical field H(c2). We observe a reduction in size of the vortex cores (and hence the coherence length) with increasing field which is consistent with the unexpectedly high and unsaturated upper critical field reported.  相似文献   

3.
We report on low temperature scanning tunneling microscopy (STM) studies of the electronic structure of vortex cores in Bi 2Sr 2CaCu 2O (8+delta). At the vortex core center, an enhanced density of states is observed at energies near Omega = +/-7 meV. Spectroscopic imaging at these energies reveals an exponential decay of these "core states" with a decay length of 22+/-3 A. The fourfold symmetry sometimes predicted for d-wave vortices is not seen in spectroscopic vortex images. A locally nodeless order parameter induced by the magnetic field may be consistent with these measurements.  相似文献   

4.
Scanning tunneling microscopy and spectroscopy measurements in the superconducting dichalcogenide 2H-NbS2 show a peculiar superconducting density of states with two well-defined features at 0.97 and 0.53 meV, located, respectively, above and below the value for the superconducting gap expected from the single band s-wave BCS model (Delta=1.76k_(B)T_(c)=0.9 meV). Both features have a continuous temperature evolution and disappear at T_(c)=5.7 K. Moreover, we observe the hexagonal vortex lattice with radially symmetric vortices and a well-developed localized state at the vortex cores. The sixfold star shape characteristic of the vortex lattice of the compound 2H-NbSe2 is, together with the charge density wave order, absent in 2H-NbS2.  相似文献   

5.
A class of topological excitations-the odd-winding number vortices-in a spinless 2D chiral p-wave (px+ipy) superconductor traps Majorana fermion states in the vortex cores. For a dilute gas of such vortices, the lowest energy fermionic eigenstates are intrinsically nonlocal. We predict two testable signatures of this unusual quantum nonlocality in quasiparticle tunneling experiments. We discuss why the associated teleportationlike phenomenon does not imply the violation of causality.  相似文献   

6.
The zero-energy bound states at the edges or vortex cores of chiral p-wave superconductors should behave like Majorana fermions. We introduce a model Hamiltonian that describes the tunneling process when electrons are injected into such states. Using a nonequilibrium Green function formalism, we find exact analytic expressions for the tunneling current and noise and identify experimental signatures of the Majorana nature of the bound states to be found in the shot noise. We discuss the results in the context of different candidate materials that support triplet superconductivity. Experimental verification of the Majorana character of midgap states would have important implications for the prospects of topological quantum computation.  相似文献   

7.
In a direct scanning tunneling spectroscopy experiment we address the problem of the quantum vortex phases in strongly confined superconductors. The strong confinement regime is achieved in in situ grown ultrathin single nanocrystals of Pb by tuning their lateral size to a few coherence lengths. Upon an external magnetic field, the scanning tunneling spectroscopy revealed novel ultradense arrangements of single Abrikosov vortices characterized by an intervortex distance up to 3 times shorter than the bulk critical one. At yet stronger confinement we discovered the giant vortex phase; the spatial evolution of the excitation tunneling spectra in the cores of these unusual quantum objects was explored. We anticipate the giant vortex phase to be a common feature of other confined quantum condensates such as superfluids, Bose-Einstein condensates of cold atoms, etc.  相似文献   

8.
Discrete conductance increments in the current-voltage characteristics of superconductor-insulator-superconductor tunnel junctions (of area ?25 μm2) associated with single flux quanta (“vortices”) trapped in the thin film electrodes have been observed. These tunneling results were obtained for both Sn and Pb and provide, for the first time, a direct measure of the density of quasiparticle states corresponding to a single vortex. Simultaneous measurements of the Josephson critical current suppresion indicate that the vortex cores are on the average not aligned across the barrier on the scale of the coherence lenght. The measured vortex density of states is in disagreement with predictions of the normal cores model and previously published data.  相似文献   

9.
We theoretically study the vortex matter structure in low-dimensional systems with superconducting order induced by proximity to a bulk superconductor. We analyze the effects of microscopic coupling mechanisms between the two systems and the effects of possible mismatch in the band structures of these materials on the energy spectrum of vortex-core electrons. The unusual structure of vortex cores is discussed in the context of recent tunneling microscopy/spectroscopy experiments.  相似文献   

10.
Evidence for static alternating magnetic fields in the vortex cores of underdoped YBa2Cu3O6+x is reported. Muon spin rotation measurements of the internal magnetic field distribution of the vortex state of YBa2Cu3O6.50 in applied fields of H = 1 T and H = 4 T reveal a feature in the high-field tail of the field distribution which is not present in optimally doped YBa2Cu3O6.95 and which fits well to a model with static magnetic fields in the vortex cores. The magnitude of the fields is estimated to be 18(2) G and decreases above T = 10 K. We discuss possible origins of the additional vortex core magnetism within the context of existing theories.  相似文献   

11.
Liping Zou 《Physics letters. A》2013,377(34-36):2182-2188
We consider non-Abrikosov vortex solutions in liquid metallic hydrogen (LMH) in the framework of two-component Ginzburg–Landau model. We have shown that there are three types of non-Abrikosov vortices depending on chosen boundary conditions at the core of vortices, namely, Neumann (N)-type, Dirichlet (D)-type and Gross–Pitaevskii (GP)-type vortices. The Neumann-type vortex has a non-vanishing condensation at the core, that is different from the ordinary vortex, and the magnetic flux could be reversed as well in LMH. Furthermore, we have obtained a new type of a neutral vortex which has no magnetic field. The presence of such a vortex is related to metallic superfluid state suggested by Babaev (2004) [1].  相似文献   

12.
The Major ana zero mode(MZM), which manifests as an exotic neutral excitation in superconductors, is the building block of topological quantum computing. It has recently been found in the vortices of several iron-based superconductors as a zero-bias conductance peak in tunneling spectroscopy. In particular, a clean and robust MZM has been observed in the cores of free vortices in(Li_(0.84)Fe_(0.16))OHFeSe. Here using scanning tunneling spectroscopy, we demonstrate that Major ana-induced resonant Andreev reflection occurs between the STM tip and this zero-bias bound state,and consequently, the conductance at zero bias is quantized as 2e~2/h. Our results present a hallmark signature of the MZM in the vortex of an intrinsic topological superconductor, together with its intriguing behavior.  相似文献   

13.
Based on a phenomenological model with competing spin-density-wave (SDW) and extended s-wave superconductivity, the vortex states in Ba(1-x)K(x)Fe2As2 are investigated by solving Bogoliubov-de Gennes equations. Our result for the optimally doped compound without induced SDW is in qualitative agreement with recent scanning tunneling microscopy experiment. We also propose that the main effect of the SDW on the vortex states is to reduce the intensity of the in-gap peak in the local density of states and transfer the spectral weight to form additional peaks outside the gap.  相似文献   

14.
The local density of states (LDOS) at the vortex lattice cores in a high- T(c) superconductor is studied by using a self-consistent mean-field theory including interactions for both antiferromagnetism (AF) and d-wave superconductivity (DSC). In a zero-field optimally doped sample the AF order is completely suppressed while DSC prevails. In the mixed state, we show that the local AF-like spin density wave order appears near the vortex core and acts as an effective local magnetic field on electrons via Zeeman coupling. As a result, the LDOS at the core exhibits a double-peak structure near the Fermi level that is in good agreement with recent scanning tunneling microscopy observations.  相似文献   

15.
Competition with magnetism is at the heart of high-temperature superconductivity, most intensely felt near a vortex core. To investigate vortex magnetism we have developed a spatially resolved probe based upon NMR spin-lattice-relaxation spectroscopy. With this approach we have found a spin-density wave associated with the vortex core in Bi(2)Sr(2)CaCu(2)O(8+y), similar to checkerboard patterns in the local density of electronic states reported from scanning tunneling microscope experiments. We have determined both the spin-modulation amplitude and decay length from the vortex core in fields up to H=30 T.  相似文献   

16.
We observe vortex pinning in 2.2 GeV Au-ion irradiated NbSe2 by scanning tunneling microscopy (STM) at 3K. The ion irradiation generates columnar defects which act as pinning sites. At various external magnetic fields the vortex arrangement is clearly resolved but shows strong distortion. The location of individual defects is extracted from STM data and compared to the vortex arrangement.  相似文献   

17.
We have measured the low frequency elastic properties of dielectric, normal conducting and superconducting metallic glasses at audio-frequencies (f1 kHz) and temperatures down to 10 mK. Our results are discussed in the framework of the tunneling model of glasses. The major assumption of the tunneling model regarding the tunneling states with long relaxation time has been verified, but discrepancies to high frequency measurements have been found. In addition, our experiments on superconducting metallic glasses seem to indicate that the present treatment of the electron-tunneling state interaction is not sufficient.  相似文献   

18.
We observe interlaced square vortex lattices in rotating dilute-gas spinor Bose-Einstein condensates (BEC). After preparing a hexagonal vortex lattice in a one-component BEC in an internal atomic state |1, we coherently transfer a fraction of the superfluid to a different state |2. The subsequent evolution of this pseudo-spin-1/2 superfluid towards a state of offset square lattices involves an intriguing interplay of phase-separation and -mixing dynamics, both macroscopically and on the length scale of the vortex cores, and a stage of vortex turbulence. The stability of the square structure is proved by its response to applied shear perturbations. An interference technique shows the spatial offset between the two vortex lattices. Vortex cores in either component are filled by fluid of the other component, such that the spin-1/2 order parameter forms a Skyrmion lattice.  相似文献   

19.
王莹  宗丰德  李峰波 《中国物理 B》2013,22(3):30315-030315
We predict three-dimensional vortex solitons in a Bose-Einstein condensate under a complex potential which is the combination of a two-dimensional parabolic trap along the transverse radial direction and a one-dimensional optical-lattice potential along the z axis direction. The vortex solitons are built in the form of layer-chain structure made up of several fundamental vortices along the optical-lattice direction, which were not reported before in the three-dimensional Bose-Einstein condensate. By using the combination of the energy density functional method with the direct numerical simulation, we find three-dimensional vortex solitons with topological charge χ=1, χ=2, and χ=3. Moreover, the macroscopic quantum tunneling and the chirp phenomena of the vortex solitons are shown in the evolution. Thereinto, the occurrence of the macroscopic quantum tunneling provides a possibility for the realization of the quantum tunneling in experiment. Specifically, we manipulate the vortex solitons along the optical lattice direction successfully. The stability limits for dragging the vortex solitons from an initial fixed position to a prescribed location are further pursued.  相似文献   

20.
The electronic spectrum of multivortex configurations in type-II superconductors is studied taking into account the effect of quasiparticle tunneling between the vortex cores. The tunneling is responsible for the formation of strongly coupled quasiparticle states for intervortex distances a < a cc , where the critical distance a c is of the order of several coherence lengths ξ. When analyzing the resulting spectra of vortex clusters bonded by quasiparticle tunneling, we find a transition from a set of degenerate Caroli-de Gennes-Matricon branches to anomalous branches similar to the ones in multiquantum giant vortices. This spectrum transformation results in the oscillatory behavior of the density of states at the Fermi level as a function of a and could be observed in mesoscopic superconductors and disordered flux line arrays in bulk systems. The text was submitted by the authors in English.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号