首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 472 毫秒
1.
Pairing correlations are studied numerically in a hole-doped spin-fermion model. Simulations performed on up to 12 x 12 clusters provide indications of D-wave superconductivity away from half-filling comparable to those of the 2D t-J model. The pairing correlations are the strongest in the direction perpendicular to the dynamic stripes that appear in the ground state at some densities. An optimal doping, where correlations are maximized, was observed at approximately 25% doping with an estimated T(c) approximately 100-200 K, in qualitative agreement with high-T(c) cuprates' phenomenology, while pairing correlations are suppressed by static stripe inhomogeneities.  相似文献   

2.
We introduce and study an extended "t-U-J" two-orbital model for the pnictides that includes Heisenberg terms deduced from the strong coupling expansion. Including these J terms explicitly allows us to enhance the strength of the (π,0)-(0,π) spin order which favors the presence of tightly bound pairing states even in the small clusters that are here exactly diagonalized. The A(1g) and B(2g) pairing symmetries are found to compete in the realistic spin-ordered and metallic regime. The dynamical pairing susceptibility additionally unveils low-lying B(1g) states, suggesting that small changes in parameters may render any of the three channels stable.  相似文献   

3.
Evidence for strong pairing at arbitrarily small J/t is provided in a t-J model on the checkerboard lattice for a specific sign of the hopping amplitude. Destructive quantum interferences suppress Nagaoka ferromagnetism when J/t-->0 and drastically reduce coherent hole motion in the fluctuating singlet background. It is shown that, by pairing in various orbital symmetry channels, holes can benefit from a large gain of kinetic energy.  相似文献   

4.
The question of whether one should speak of a "pairing glue" in the Hubbard and t-J models is basically a question about the dynamics of the pairing interaction. If the dynamics of the pairing interaction arises from virtual states, whose energies correspond to the Mott gap, and give rise to the exchange coupling J, the interaction is instantaneous on the relative time scales of interest. In this case, while one might speak of an "instantaneous glue," this interaction differs from the traditional picture of a retarded pairing interaction. However, as we will show, the dominant contribution to the pairing interaction for both of these models arises from energies reflecting the spectrum seen in the dynamic spin susceptibility. In this case, the basic interaction is retarded, and one speaks of a spin-fluctuation glue which mediates the d-wave pairing.  相似文献   

5.
N. Bulut 《物理学进展》2013,62(7):1587-1667
The numerical studies of d x 2 - y 2 -wave pairing in the two-dimensional (2D) and the 2-leg Hubbard models are reviewed. For this purpose, the results obtained from the determinantal Quantum Monte Carlo and the Density-Matrix Renormalization-Group calculations are presented. These are calculations which were motivated by the discovery of the high- T c cuprates. In this review, the emphasis is placed on the microscopic many-body processes which are responsible for the d x 2 - y 2 -wave pairing correlations observed in the 2D and the 2-leg Hubbard models. In order to gain insight into these processes, the results on the effective pairing interaction as well as the magnetic, density and the single-particle excitations will be reviewed. In addition, comparisons will be made with the other numerical approaches to the Hubbard model and the numerical results on the t - J model. The results reviewed here indicate that an effective pairing interaction which is repulsive at ( ~ , ~ ) momentum transfer, and enhanced single-particle spectral weight near the ( ~ ,0) and (0, ~ ) points of the Brillouin zone, create optimum conditions for d x 2 - y 2 -wave pairing. These are two effects which act to enhance the d x 2 - y 2 -wave pairing correlations in the Hubbard model. Finding additional ways is an active research problem.  相似文献   

6.
Using computational techniques, it is shown that pairing is a robust property of hole-doped antiferromagnetic insulators. In one dimension and for two-leg ladder systems, a BCS-like variational wave function with long-bond spin singlets and a Jastrow factor provides an accurate representation of the ground state of the t-J model, even though strong quantum fluctuations destroy the off-diagonal superconducting long-range order in this case. However, in two dimensions it is argued-and numerically confirmed using several techniques, especially quantum Monte Carlo-that quantum fluctuations are not strong enough to suppress superconductivity.  相似文献   

7.
We have calculated high temperature series to 12th order in inverse temperature for singlet superconducting correlation functions of the 2D t-J model with s, dx2-y2, and dxy symmetry pairs. Our calculations differ from previous work by removing disconnected pieces from the original four-point correlator and by treating the resulting pairing correlator as a matrix. We find the correlation length for dx2-y2 pairing grows significantly with decreasing temperature and develops a broad peak as a function of doping around delta=0.25 for T/J=0.25 at J/t=0.4. The correlation lengths for s and dxy symmetry remain small and do not display peaks. Antiferromagnetic spin correlations at low doping act to suppress the dx2-y2 and dxy superconducting correlation lengths.  相似文献   

8.
Using a newly developed hybrid Monte Carlo algorithm for the nearest-neighbor (nn) t-J model, we show that antiholons identified in the supersymmetric inverse squared (IS) t-J model are clearly visible in the electron-addition spectrum of the nn t-J model at J=2t and also for J=0.5t, a value of experimental relevance.  相似文献   

9.
Correlation functions and low-energy excitations are investigated in the asymmetric two-leg ladder consisting of a Hubbard chain and a noninteracting tight-binding (Fermi) chain using the density matrix renormalization group method. The behavior of charge, spin and pairing correlations is discussed for the four phases found at half filling, namely, Luttinger liquid, Kondo-Mott insulator, spin-gapped Mott insulator and correlated band insulator. Quasi-long-range antiferromagnetic spin correlations are found in the Hubbard leg in the Luttinger liquid phase only. Pair-density-wave correlations are studied to understand the structure of bound pairs found in the Fermi leg of the spin-gapped Mott phase at half filling and at light doping but we find no enhanced pairing correlations. Low-energy excitations cause variations of spin and charge densities on the two legs that demonstrate the confinement of the lowest charge excitations on the Fermi leg while the lowest spin excitations are localized on the Hubbard leg in the three insulating phases. The velocities of charge, spin, and single-particle excitations are investigated to clarify the confinement of elementary excitations in the Luttinger liquid phase. The observed spatial separation of elementary spin and charge excitations could facilitate the coexistence of different (quasi-)long-range orders in higher-dimensional extensions of the asymmetric Hubbard ladder.  相似文献   

10.
We study the single-vortex solution of the t-J model within resonating-valence-bond mean-field theory. We find two types of vortex cores, insulating and metallic, depending on the parameters of the model. The pairing order parameter near both cores have d(x(2)-y(2))+ietad(xy) symmetry. For some range of t/J the calculated tunneling spectrum of the metallic vortex core agrees qualitatively with the STM tunneling data for BSCCO.  相似文献   

11.
A theoretical investigation of boson versions of the t-J and t-J(z) models on the square lattice is carried out. In the t-J(z) model, phase separation between a hole-rich and a hole-free phase occurs, at sufficiently low hole doping, for arbitrarily small values of J(z). The boson t-J model, instead, features a uniform ground state at any doping for J/t< or =1.5. No evidence of a striped ground state is found. Relevance of this study to the corresponding fermion models is discussed. Fermi statistics is found to enhance the tendency toward phase separation; in particular, phase separation is predicted, at low doping, in the fermion t-J(z) model, at all values of J(z).  相似文献   

12.
本文采用含有非磁性杂质的二维t-J模型来描述掺锌的高温氧化物超导材料,并利用非均匀双时格林函数理论对有限尺寸的材料进行了数值计算.在 Fermion-Spin 理论框架下,我们分别研究了非磁性杂质引起的电荷和自旋的不均匀性及对材料正常态特性的影响.我们发现:一方面非磁性杂质锌对其附近的自旋反铁磁关联有强烈的影响,能使周围的最近邻关联函数的绝对值比均匀情况增加很多;另一方面,空位子会受到其周围自旋的影响而出现相应的分布不均匀性,进而又影响自旋关联的不均匀性.并且,围绕杂质锌能够形成自旋激发和空位激发的局域态.  相似文献   

13.
We study competition between different phases in a strongly correlated nanostructure with an edge. Making use of the self-consistent Green's function and density matrix renormalization group methods, we study a system described by the t-J(z) and t-J models on a strip of a square lattice with a linear hole density n(||). At intermediate interaction strength J/t we find edge stripelike states, reminiscent of the bulk stripes that occur at smaller J/t. We find that stripes attach to edges more readily than hole pairs, and that the edge stripes can exhibit a peculiar phase separation.  相似文献   

14.
Optical spectroscopy was used to determine nearest-neighbor spin correlations in pyrochlore molybdates R2Mo2O7 (R=Y, Sm, and Nd), which exhibit ferromagnetic metal to spin-glass insulator transition as the R ion size decreases. Using an analysis based on the orbitally degenerate Hubbard model, we could estimate important physical parameters, such as the effective on-site Coulomb energy U(eff) and the Hund rule exchange coupling J(H). We demonstrated experimentally and theoretically that the effective superexchange interaction between the Mo ions depends on J(H)/U(eff), which determines the phase boundary of the magnetic ground states.  相似文献   

15.
The structure of the low-energy electronic states in layered cobaltates is considered starting from the Mott insulating limit. We argue that the coherent part of the wave functions and the Fermi-surface topology at low doping are strongly influenced by spin-orbit coupling of the correlated electrons on the t(2g) level. An effective t-J model based on mixed spin-orbital states is radically different from that for the cuprates, and supports unconventional, pseudospin-triplet pairing.  相似文献   

16.
Using cluster perturbation theory, it is shown that the spectral weight and pseudogap observed at the Fermi energy in recent angle resolved photoemission spectroscopy of both electron- and hole-doped high-temperature superconductors find their natural explanation within the t-t(')-t(")-U Hubbard model in two dimensions. The value of the interaction U needed to explain the experiments for electron-doped systems at optimal doping is in the weak to intermediate coupling regime where the t-J model is inappropriate. At strong coupling, short-range correlations suffice to create a pseudogap, but at weak-coupling long correlation lengths associated with the antiferromagnetic wave vector are necessary.  相似文献   

17.
We consider a spin-1/2 ladder with a ferromagnetic rung coupling J perpendicular and inequivalent chains. This model is obtained by a twist (theta) deformation of the ladder and interpolates between the isotropic ladder (theta=0) and the SU(2) ferromagnetic Kondo necklace model (theta = pi). We show that the ground state in the (theta, J perpendicular) plane has a finite string order parameter characterizing the Haldane phase. Twisting the chain introduces a new energy scale, which we interpret in terms of a Suhl-Nakamura interaction. As a consequence we observe a crossover in the scaling of the spin gap at weak coupling from delta/J parallel proportional, variant J perpendicular/J parallel for theta < theta c approximately 8 pi/9 to delta/J parallel proportional, variant (J perpendicular/J parallel)2 for theta > theta c. Those results are obtained on the basis of large scale quantum Monte Carlo calculations.  相似文献   

18.
Numerical studies of the Hubbard model and its strong-coupling form, the t-J model, show evidence for antiferromagnetic, -pairing and stripe correlations which remind one of phenomena seen in the layered cuprate materials. Here, we ask what these numerical results imply about various scenarios for the pairing mechanism.  相似文献   

19.
It is shown that spectral functions within the extended t-J model, evaluated using the finite-temperature diagonalization of small clusters, exhibit the high-energy kink in single-particle dispersion consistent with recent angle-resolved photoemission results on hole-doped cuprates. The kink and waterfall-like features persist up to large doping and to temperatures beyond J; hence, the origin can be generally attributed to strong correlations and incoherent hole propagation at large binding energies. In contrast, our analysis predicts that electron-doped cuprates do not exhibit these phenomena in photoemission.  相似文献   

20.
The extended and standard t-J models are computationally studied on ladders and planes, with emphasis on the small J/t region. At couplings compatible with photoemission results for undoped cuprates, half-doped stripes separating pi-shifted antiferromagnetic (AF) domains are found, as in Tranquada's interpretation of neutron experiments. Our main result is that the elementary stripe "building block" resembles the properties of one hole at small J/t, with robust AF correlations across the hole induced by the local tendency of the charge to separate from the spin. This suggests that the seed of half-doped stripes already exists in the unusual properties of the insulating parent compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号