首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
First-principles calculations have been employed to investigate the structural transformation and direct to indirect band gap transition of ZnO nanotubes under uniaxial strain. The results show that armchair and zigzag nanotubes can be transformed to each other via unusual fourfold-coordinated structures under the applied strain. Both the armchair and zigzag nanotubes exhibit direct band gap while the unusual fourfold-coordinated ones display indirect band gap. The origin of such a direct-to-indirect band gap transition is explained based on the analyses of atomic orbital contributions.  相似文献   

2.
Within tight-binding model, the band gaps of armchair and zigzag carbon nanotubes (CNTs) under both uniaxial tensile and torsional strains have been studied. It is found that the changes in band gaps of CNTs depend strongly on the strain type. The torsional strain can induce a band gap for armchair CNTs, but it has little effect on band gap of the zigzag CNTs. While the tensile strain has great effect on band gap of zigzag CNTs, but it has no effect on that of the armchair CNTs. More importantly, when both the tensile and torsional strains are simultaneously applied to the CNTs, the band gap changes of armchair CNTs are not equal to a simple sum over those induced separately by uniaxial tensile and torsional strains. There exists a cooperative effect between two kinds of strains on band gap changes of armchair CNTs. But for zigzag CNTs, the cooperative effect was not found. Analytical expressions for the band gaps of armchair and zigzag CNTs under combined uniaxial–torsional strains have been derived, which agree well with the numerical results.  相似文献   

3.
The electronic structures and physical properties of zigzag BC2N (n,0; n = 4–10) and armchair BC2N (n,m; n = m = 4–10) nanotubes (type III) are studied by using density functional theory with the generalized gradient approximation. From a comparison of the binding energies, it is inferred that in the large diameter BC2N nanotubes, the zigzag form is thermally more stable than the armchair form. BC2N nanotubes (with the exception of (4,0) which is conductor) are gapless semiconductors. Depend on the chirality index, the zigzag forms of BC2N nanotubes have narrower band gap than the armchair form. Semiconductor character in the studied BC2N nanotubes is due to contribution of p electrons in the Fermi level. Mulliken population analyses show that significant amounts of electron charge are transferred between atoms; which suggests the existence of polar covalent bonds in the BC2N nanotubes.  相似文献   

4.
陈丽娟 《中国物理》2006,15(4):798-801
The stability and electronic structure of hypothetical InN nanotubes were studied by first-principles density functional theory. It was found that the strain energies of InN nanotubes are smaller than those of carbon nanotubes of the same radius. Single-wall zigzag InN nanotubes were found to be semiconductors with a direct band gap while the armchair counterparts have an indirect band gap. The band gaps of nanotubes decrease with increasing diameter, similar to the case of carbon nanotubes.  相似文献   

5.
MoS2 and WS2 layered transition-metal dichalcogenides are indirect band gap semiconductors in their bulk forms. Thinned to a monolayer, they undergo a transition and become direct band gap materials. Layered structures of that kind can be folded to form nanotubes. We present here the electronic structure comparison between bulk, monolayered and tubular forms of transition metal disulfides using first-principle calculations. Our results show that armchair nanotubes remain indirect gap semiconductors, similar to the bulk system, while the zigzag nanotubes, like monolayers, are direct gap materials, what suggests interesting potential applications in optoelectronics.  相似文献   

6.
The electrical properties and NMR parameters of the pristine and Ga-doped structures of two representative (8, 0) zigzag and (4, 4) armchair of boron phosphide nanotubes (BPNTs) have been investigated. The structural geometries of above nanotubes have been allowed to relax by optimization and then the isotropic and anisotropic chemical shielding parameters (CSI and CSA) of 11B and 31P have been calculated based on DFT theory. The results reveal that the influence of Ga-doping was more significant on the geometries of the zigzag model than the armchair one. The difference of band gap energies between the pristine and Ga-doped armchair BPNTs was larger than the zigzag model. Significant differences of NMR parameters of those nuclei directly contributed to the Ga-doping atoms have been observed.  相似文献   

7.
本文基于密度泛函理论计算分析了手性参数为(17,0)、(20,0)、(26,0) (10,10)、(12,12)、(15,15)的碳化硅纳米管的能带图,态密度及主要光学性质。结果表明:锯齿型与扶手椅型碳化硅纳米管均具有明显的半导体性质;在相近直径下,扶手椅型碳化硅纳米管带隙宽度要大于锯齿型碳化硅纳米管的带隙宽度;碳化硅纳米管的光吸收峰在100nm~200nm之间,可用于制作紫外线探测器件。  相似文献   

8.
刘红  印海建  夏树宁 《物理学报》2009,58(12):8489-8500
在紧束缚理论的基础上,推导出轴向拉伸和扭转形变时碳纳米管(CNT)的能带公式.结果显示拉伸和扭转形变都可以改变CNT的导电性质,在金属型和半导体型之间转变,特别是对于锯齿型CNT,根据n 与3的余数关系,在拉伸和扭转中分别显示出三种不同的变化规律.进一步应用场效应晶体管Natori理论模拟计算形变对CNT场效应晶体管的电流-电压特性的影响,锯齿型CNT根据n 与3的余数关系表现出不同的电流变化趋势,而对于扶手椅型CNT轴向拉伸不改变电流;在扭转形变时,CNT电流急剧升高,特别是扶手椅型CNT.锯齿型CNT和扶手椅型CNT的电流随扭转角度和外电压行为明显不同.在某些特定的扭转角度,电流随扭转角度变化非常显著,显示出锯齿型CNT和扶手椅型CNT发生半导体型与金属型之间的转变. 关键词: 碳纳米管 紧束缚理论 费米能级 能带结构  相似文献   

9.
袁剑辉  袁晓博 《物理学报》2008,57(6):3666-3673
用分子动力学方法研究了端口接枝不同数量羟基对扶手椅型和锯齿型单壁碳纳米管弹性模量的影响.结果表明,未接枝的扶手椅型(5, 5),(10,10)管和锯齿型(9, 0),(18, 0)管杨氏模量分别为948,901和804,860GPa.在接枝2—8个羟基情况下,锯齿型单壁碳纳米管拉伸杨氏模量基本不随接枝数量增加发生变化,而扶手椅单壁碳纳米管则不同,接枝状态下的弹性模量比未接枝状态小很多,但接枝一定数量后,其杨氏模量又略增到某一稳定值.分别从接枝后碳纳米管变形电子密度等值线结构、C—C键长和系统结合能变化规律等方面,对单壁碳纳米管弹性模量的接枝效应进行了分析. 关键词: 碳纳米管 羟基 接枝效应 杨氏模量  相似文献   

10.
The structural and electronic properties of semiconductors (Si and Ge) and metal (Au and Tl) atoms doped armchair (n, n) and zigzag (n, 0); n=4–6, single wall carbon nanotubes (SWCNTs) have been studied using an ab-initio method. We have considered a linear chain of dopant atoms inside CNTs of different diameters but of same length. We have studied variation of B.E./atom, ionization potential, electron affinity and HOMO–LUMO gap of doped armchair and zigzag CNTs with diameter and dopant type. For armchair undoped CNTs, the B.E./atom increases with the increase in diameter of the tubes. For Si, Ge and Tl doped CNTs, B.E./atom is maximum for (6, 6) CNT whereas for Au doped CNTs, it is maximum for (5, 5) CNTs. For pure CNTs, IP decreases slightly with increasing diameter whereas EA increases with diameter. The study of HOMO–LUMO gap shows that on doping metallic character of the armchair CNTs increases whereas for zigzag CNTs semiconducting character increases. In case of zigzag tubes only Si doped (5, 0), (6, 0) and Ge doped (6, 0) CNTs are stable. The IP and EA for doped zigzag CNTs remain almost independent of tube diameter and dopant type whereas for doped armchair CNTs, maximum IP and EA are observed for (5, 5) tube for all dopants.  相似文献   

11.
《Physics letters. A》2014,378(5-6):565-569
The band-gap modulation of zigzag and armchair graphane-like SiC nanoribbons (GSiCNs) under uniaxial elastic strain is investigated using the density functional theory. The results show that band gap of both structures all decreases when being compressed or tensed. In compression, both zigzag and armchair GSiCNs are semiconductors with a direct band gap. However, in tension, the armchair GSiCNs undergo a direct-to-indirect band-gap transition but the zigzag GSiCNs still have a direct band gap. These results are also proved by HSE06 method. This implies a potential application of the graphane-like SiC nanoribbons in the future pressure sensor and optical electronics nanodevices.  相似文献   

12.
Carbon (C) doped zigzag (8, 0)@(16, 0) and armchair (5, 5)@(10, 10) double-walled boron-nitride nanotubes (DWBNNTs), under the influence of external electric fields applied in different directions are studied through first-principles calculations. We have considered the substitution of a B and a N (one species at each wall—inner or outer) by C atoms, generating a type-n inside a type-p semiconductor ((type-n)@(type-p)) and vice-versa. The resulting doped DWBNNT can be thought as a p–n junction. The obtained formation energies and structural properties results indicate that these structures present good stability and are not affected by the electric field application. For the electronic structure, it was observed that external fields can be used to modulate these systems energy gaps. Also, there is a preferred field direction which minimizes the gap values, and the gap increase or decrease is related to the reverse and direct polarization of the p–n junction, respectively.  相似文献   

13.
A new class of non-carbon nanotubes based on Group III and Group V elements (aluminum and phosphorus, respectively) is considered. The equilibrium geometry, energy characteristics, and electronic structure of the AlP nanotubes were calculated using the density functional theory. These calculations demonstrated that the AlP nanotubes are energetically stable structures. It was found that a low strain energy (approximately 0.01–0.07 eV) is required for rolling a two-dimensional hexagonal AlP structure into a tube. The AlP nanotubes are found to be wide-band-gap semiconductors with a band gap of 2.05–3.73 eV with direct (for the zigzag type) or indirect (for the armchair type) transitions between the top of the valence band and the bottom of the conduction band. The band gap of these nanotubes increases with the tube diameter, approaching the band gap of a two-dimensional hexagonal AlP layer.  相似文献   

14.
韩典荣  王璐  罗成林  朱兴凤  戴亚飞 《物理学报》2015,64(10):106102-106102
相近直径的锯齿型和扶手椅型碳纳米管可以共轴组合形成5-7碳环交替出现的柱形对称异质结. 本文利用分子动力学方法研究了直径相近且等长锯齿型和扶手椅型碳纳米管形成的(n, n)-(2n, 0)结在扭转过程中的扭矩和轴向应力随扭转角度的变化规律以及应力传递过程. 研究发现, (n, n)-(2n, 0)结扭转应变在达弹性限度内不会产生轴向应力, 该效应对基于碳纳米管扭转特性的纳米振荡器件的设计具有重要意义.  相似文献   

15.
Density functional theory calculations have been used to investigate the rolling process of armchair boron nitride nanoribbons (n-ABNNRs, n?=?6,?8,?10,?12,?14,?16) to form (n,?0) zigzag boron nitrogen nanotubes (ZBNNTs, n?=?3–8). Results showed that by rolling (increasing the curvature) energy gap decreases and the difference between the initial and final states increases dramatically with decreasing the ribbon width. It was found that ZBNNTs have direct band gaps and the gap increases by diameter, while ABNNRs have direct band gaps which oscillate with the ribbon width.  相似文献   

16.
The structural, electronic, elastic, mechanical properties and stress-strain relationship of chair, boat, and stirrup conformers of fully hydrogenated h-BN(fh-BN) are investigated in this work using the Perdew-Burke-Ernzerhof(PBE) function in the frame of density functional theory. The achieved results for the lattice parameters and band gaps of three conformers in this research are in good accordance with other theoretical results. The band structures of three conformers show that the chair, boat, and stirrup are direct band gap with a band gaps of(3.12, 4.95, and4.95 e V), respectively. To regulate the band structures of fh-BN, we employ a hybrid functional of Heyd-ScuseriaErnzerhof(HSE06) calculations and the band gaps are 3.84(chair), 6.12(boat), and 6.18 e V(stirrup), respectively.The boat and stirrup fh-BN exhibits varying degrees of mechanical anisotropic properties with respect to the Young's modulus and Poisson's ratio, while the chair fh-BN exhibits the mechanical isotropic properties. Furthermore, tensile strains are applied in the armchair and zigzag directions related to tensile deformation of zigzag and armchair nanotubes,respectively. We find that the ultimate strains in zigzag and armchair deformations in stirrup conformer are 0.34 and0.25, respectively, larger than the strains of zigzag(0.29) and armchair(0.18) deformations in h-BN although h-BN can surstain a surface tension up to the maximum stresses higher than those of three conformers of fh-BN. Furthermore, the band gap energies in three conformers can be modulated effectively with the biaxial tensile strain.  相似文献   

17.
Structural and electronic properties of narrow single-walled GaN nanotubes with diameter from 0.30 to 0.55 nm are investigated using the density functional method with generalized-gradient approximation. The calculations of total energies predict that the most likely GaN nanotubes in our calculation are (2,2), (3,2) and (3,3) nanotubes. From a detailed analysis we find that these narrow single-walled GaN nanotubes are all semiconductors, of which the armchair and chiral tubes are indirect-band-gap semiconductors whereas the zigzag ones have a direct gap except for (4,0) tube. The indirect band gap of (4,0) tube can stem from band sequence change induced by curvature effect. Our results show that the π-π hybridization effect and the formation of benign buckling separations play a key role in the band sequence changes of (4,0) tube.  相似文献   

18.
The results of a theoretical research into the band gap of strained doped carbon nanotubes of two structural modifications of the “armchair” and “zigzag” types are described. The electronic states in the doped nanotubes are considered in terms of the periodic Anderson model. Nitrogen and boron atoms are selected as donor and acceptor substitutional defects, respectively. The dependences of the band gap of the carbon nanotubes on impurity concentration and compressive and tensile strain are studied.  相似文献   

19.
The electronic transport properties of single-walled ZnO nanotubes with different chiralities are investigated by nonequilibrium Green's function combined with density functional theory. In this paper we consider three representative ZnO nanotubes, namely (3, 3) armchair, (5, 0) zigzag, and (4, 2) chiral, with a similar diameter of about 5.4 Å. Short nanotubes exhibit good conductance behavior. As the tube length increases, the conductance decreases at low bias and the nanotubes indicate semiconducting behavior. The current-voltage characteristics of the nanotubes longer than 3 nm depend weakly on the length of the tubes. The armchair and chiral ZnO nanotubes with the same length and diameter have almost overlapped current-voltage curves. The electron transport behaviors are analyzed in terms of the transmission spectra, density of states and charge population of these nanotubes. The results indicate that the resonant peaks above the Fermi level are responsible for electric currents. However, the zigzag ZnO nanotubes exhibit asymmetric current-voltage curves attributed to the built-in polarization field and give larger current than the armchair and chiral nanotubes at the same bias. The features explored here strongly suggest that the ZnO nanotubes are stable, flexible structures, which are valuable in Nano-Electromechanical System.  相似文献   

20.
单壁碳纳米管杂化轨道计算   总被引:5,自引:0,他引:5       下载免费PDF全文
根据轨道杂化理论以及碳纳米管的几何结构,计算了(n,0),(n,n)和(n,m)三种单壁碳纳米管的杂化轨道,给出了杂化轨道s轨道成分和p轨道成分的解析式.对于管径较小的纳米管,锯齿型(n<40),扶手椅型(n<20),手性型(n<30,m相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号