首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An array of NMR spectroscopy experiments have been carried out to obtain conformationally dependent (1)H,(13)C- and (13)C,(13)C-spin-spin coupling constants in the trisaccharide α-L-Rhap-(1 → 2)[α-L-Rhap-(1 → 3)]-α-L-Rhap-OMe. The trisaccharide was synthesized with (13)C site-specific labeling at C2' and C2″, i.e. in the rhamnosyl groups in order to alleviate (1)H spectral overlap. This facilitated the measurement of a key trans-glycosidic proton-proton cross-relaxation rate using 1D (1)H,(1)H-T-ROESY experiments as well as a (3)J(C, H) coupling employing 1D (1)H,(13)C-long-range experiments, devoid of potential interference from additional J coupling. By means of both the natural abundance compound and the (13)C-labeled sample 2D (1)H,(13)C-J-HMBC and (1)H,(13)C-HSQC-HECADE NMR experiments, total line-shape analysis of (1)H NMR spectra and 1D (13)C NMR experiments were employed to extract (3)J(C, H) , (2)J(C, H), (3)J(C, C), and (1)J(C, C) coupling constants. The (13)C site-specific labeling facilitates straightforward determination of (n)J(C, C) as the splitting of the (13)C natural abundance resonances. This study resulted in eight conformationally dependent coupling constants for the trisaccharide and illustrates the use of (13)C site-specific labeling as a valuable approach that extends the 1D and 2D NMR methods in current use to attain both hetero- and homonuclear spin-spin coupling constants that subsequently can be utilized for conformational analysis.  相似文献   

2.
A suite of (2)H-based spin relaxation NMR experiments is presented for the measurement of molecular dynamics in a site-specific manner in uniformly (13)C, randomly fractionally deuterated ( approximately 50%) RNA molecules. The experiments quantify (2)H R(1) and R(2) relaxation rates that can subsequently be analyzed to obtain information about dynamics on a pico- to nanosecond time scale. Sensitivity permitting, the consistency of the data can be evaluated by measuring all five rates that are accessible for a spin 1 particle and establishing that the rates obey relations that are predicted from theory. The utility of the methodology is demonstrated with studies of the dynamics of a 14-mer RNA containing the UUCG tetraloop at temperatures of 25 and 5 degrees C. The high quality of the data, even at 5 degrees C, suggests that the experiments will be of use for the study of RNA molecules that are as large as 30 nucleotides.  相似文献   

3.
Labeling experiments provide evidence that the Fe1- and CO1-mediated losses of H2 and 2 H2 from tetraline are extremely specific in that both reactions follow a clear syn-1,2-elimination involving C(1)/C(2) and C(3)/C(4), respectively. In the course of the multi-step reaction, the metal ions do not move from one side of the π-surface to the other. Independent experiments confirm that the kinetic isotope effect (KIE) associated with the loss of the first H2 molecule is indeed larger than the KIE for the elimination of the second H2 molecule.  相似文献   

4.
It is shown by 13C and D labelling that the ethyl radical elimination from the molecular ion of 6-methoxy-1-hexene is a very complex process involving at least two different channels. The major channel (80%) is induced by an initial 1,5-hydrogen shift in the molecular ion from C(5) to C(l) leading via a series of steps to methoxy-cyclohexnne, which then undergoes a ring contraction to 2-methyl-1-methoxycyclopentane, being the key intermediate for the ethyl loss. The same key intermediate is formed in the other, minor channel (20%) by ring closure directly following an initial 1,6-hydrogen shift in the molecular ion of 6-methoxy-1-hexene from C(6) to C(l). Collision-induced dissociation experiments on the [M ? ethyl]+ ion from 6-methoxy-1-hexene have further established that it has the unique structure of oxygen methyl cationized 2-methyIpropen-2-al. This ion is also generated by ethyl loss from the molecular ion of 2-methyl-1-methoxycyclopentane itself, as shown by collision-induced dissociation experiments, thus confirming the key role of the intermediate mentioned.  相似文献   

5.
We present a family of homonuclear (13)C-(13)C magic angle spinning spin diffusion experiments, based on R2(n)(v) (n = 1 and 2, v = 1 and 2) symmetry sequences. These experiments are well suited for (13)C-(13)C correlation spectroscopy in biological and organic systems and are especially advantageous at very fast MAS conditions, where conventional PDSD and DARR experiments fail. At very fast MAS frequencies the R2(1)(1), R2(2)(1), and R2(2)(2) sequences result in excellent quality correlation spectra both in model compounds and in proteins. Under these conditions, individual R2(n)(v) display different polarization transfer efficiency dependencies on isotropic chemical shift differences: R2(2)(1) recouples efficiently both small and large chemical shift differences (in proteins these correspond to aliphatic-to-aliphatic and carbonyl-to-aliphatic correlations, respectively), while R2(1)(1) and R2(2)(2) exhibit the maximum recoupling efficiency for the aliphatic-to-aliphatic or carbonyl-to-aliphatic correlations, respectively. At moderate MAS frequencies (10-20 kHz), all R2(n)(v) sequences introduced in this work display similar transfer efficiencies, and their performance is very similar to that of PDSD and DARR. Polarization transfer dynamics and chemical shift dependencies of these R2-driven spin diffusion (RDSD) schemes are experimentally evaluated and investigated by numerical simulations for [U-(13)C,(15)N]-alanine and the [U-(13)C,(15)N] N-formyl-Met-Leu-Phe (MLF) tripeptide. Further applications of this approach are illustrated for several proteins: spherical assemblies of HIV-1 U-(13)C,(15)N CA protein, U-(13)C,(15)N-enriched dynein light chain DLC8, and sparsely (13)C/uniformly (15)N enriched CAP-Gly domain of dynactin. Due to the excellent performance and ease of implementation, the presented R2(n)(v) symmetry sequences are expected to be of wide applicability in studies of proteins and protein assemblies as well as other organic solids by MAS NMR spectroscopy.  相似文献   

6.
Modified two-dimensional (2D) triple-resonance H(C)P and H(P)C experiments based on INEPT/HMQC and double-INEPT schemes are applied to the study of organophosphorus compounds at natural abundances. The implementation of effective (1)H--(13)C gradient selection, additional purging pulsed field gradients, spinlock pulses, and improved phase cycling is demonstrated to allow weak correlation signals based on long-range couplings to be readily observed. Through the combination of two heteronuclear long-range coupling constants, (n)J(CH) and (n)J(PC) in H(C)P experiments or (n)J(PH) and (n)J(PC) in H(P)C experiments, protons can be correlated to a second heteronucleus through 4-7 chemical bonds. These experiments thus overcome the inherit limitations of classical (1)H-X HMBC experiments, which require a nonzero value of the heteronuclear coupling constant (n)J(XH). Ultra-broadband inversion composite pulses are successfully employed in the H(P)C INEPT/HMQC and H(P)C double-INEPT pulse sequences to increase the utility of the experiments and the quality of obtained spectra. This work extends and completes a set of 2D phase-sensitive triple-resonance experiments applicable at natural abundances, and also offers insight into the methodology of triple-resonance experiments and the application of pulsed field gradients. A one-dimensional triple-resonance experiment employing carbon detection is suggested for accurate determination of small (n)J(PC).  相似文献   

7.
Biosynthesis of tetrapetalones   总被引:1,自引:0,他引:1  
The biosynthesis of tetrapetalones (tetrapetalones A, B, C, and D) in Streptomyces sp. USF-4727 was studied by feeding experiments with [1-13C] sodium propanoate, [1-13C] sodium butanoate, [carbonyl-13C] 3-amino-5-hydroxybenzoic acid (AHBA) hydrochloride, and [1-13C] glucose, followed by analysis of the 13C-NMR spectra. These feeding experiments revealed that the four tetrapetalones were polyketide compounds constructed from propanoate, butanoate, AHBA, and glucose. The tetrapetalone biosynthetic pathway was also suggested in this study. In this pathway, tetrapetalone A (1) is synthesized by polyketide synthase (PKS) using AHBA as a starter unit, then the side chain of 1 is subjected to acetoxylation to produce tetrapetalone B (2). Additionally, 1 is oxidized and transformed into tetrapetalone C (3). In a similar way, 2 is converted to tetrapetalone D (4). Therefore, the biosynthetic relationship of the four tetrapetalones was indicated.  相似文献   

8.
New NMR experiments are presented for the assignment of methyl (13)C and (1)H chemical shifts from Ile, Leu, and Val residues in high molecular weight proteins. The first class of pulse schemes transfers magnetization from the methyl group to the backbone amide spins for detection, while the second more sensitive class uses an "out-and-back" transfer scheme in which side-chain carbons or backbone carbonyls are correlated with methyl (13)C and (1)H spins. Both groups of experiments benefit from a new isotopic labeling scheme for protonation of Leu and Val methyl groups in large deuterated proteins. The approach makes use of alpha-ketoisovalerate that is (13)C-labeled and protonated in one of its methyl groups ((13)CH(3)), while the other methyl is (12)CD(3). The use of this biosynthetic precursor leads to production of Leu and Val residues that are (13)CH(3)-labeled at only a single methyl position. Although this labeling pattern effectively reduces by 2-fold the concentration of Leu and Val methyls in NMR samples, it ensures linearity of Val and Leu side-chain (13)C spin-systems, leading to higher sensitivity and, for certain classes of experiments, substantial simplification of NMR spectra. Very near complete assignments of the 276 Ile (delta 1 only), Leu, and Val methyl groups in the single-chain 723-residue enzyme malate synthase G (MSG, molecular tumbling time 37 +/- 2 ns at 37 degrees C) have been obtained using the proposed isotopic labeling strategy in combination with the new NMR experiments.  相似文献   

9.
Effect of nitrogen and argon matrices on the C-H asymmetric stretching and bending infrared frequencies of the acetylene molecule, C(2)H(2), has been studied by matrix isolation experiments as well as by calculations at MP2 level of theory. The complexes of C(2)H(2) in nitrogen and argon matrices, viz., C(2)H(2)(N(2))(m) (with m=2-8) and C(2)H(2)(Ar)(n) (with n=2-10) are theoretically explored. The computed acetylenic C-H asymmetric stretch in C(2)H(2)-nitrogen complexes shows a redshift of 3.0 to 11.9 cm(-1) compared with the frequencies of the free acetylene molecule, and a corresponding blueshift of 7.4 to 26.2 cm(-1) when C(2)H(2) is complexed with argon atoms. The trends in the computed shifts are in good agreement with the experiments. The molecular electrostatic potential minimum of C(2)H(2) becomes more negative when complexed with nitrogen than on complexation with argon. This observation implies a greater basic character for C(2)H(2) in the nitrogen matrix, favoring the formation of H-pi(C(2)H(2)-MeOH) complex as compared to that in the Ar matrix. Experimentally the preferential formation of H-pi(C(2)H(2)-MeOH) complex in the N(2) matrix has indeed been observed.  相似文献   

10.
A system consisting of a chiral lithium amide and n-BuLi in tol-d(8) solution was investigated with (1)H and (13)C INEPT DOSY, (6)Li and (15)N NMR, and other 2D NMR techniques. A mixed 2:1 trimeric complex was identified as the major species as the stoichiometry approached 1.5 equiv of n-BuLi to 1 equiv of amine compound. (1)H and (13)C INEPT DOSY spectra confirmed this lithium aggregate in the solution. The formula weight of the aggregate, correlated with diffusion coefficients of internal references, indicated the aggregation number of this complex. Plots of log D(rel) vs log FW are linear (r > 0.9900). (6)Li and (15)N NMR titration experiments also corroborated these results. These NMR experiments indicate that this mixed aggregate is the species that is responsible for asymmetric addition of n-BuLi to aldehydes.  相似文献   

11.
Acaterin (1), produced by Pseudomonas sp. A 92, is a secondary metabolite having a 2-penten-4-olide structure. Feeding experiments with (2)H- and (13)C-labeled decanoic acid, their 3-oxygenated congeners, and octanoic acid have suggested that 1 is biosynthesized via coupling of a C(5) unit with octanoate, rather than via introduction of a C(3) unit at the alpha position of a decanoate derivative. Further feeding study of [2,3-(13)C(2)]decanoic acid concluded that the former route is operating in the biosynthesis of 1.  相似文献   

12.
Alkane complexes of the type Cp'Re(CO)2(alkane) (Cp' = cyclopentadienyl or (isopropyl)cyclopentadienyl; alkane = isotopomers of n-pentane and cyclopentane) have been characterized using NMR spectroscopy following photolysis of Cp'Re(CO)3 in the appropriate alkane at 163-193 K. In the case of n-pentane, three different complexes are observed corresponding to binding of the three different types of carbon in this alkane. ROESY NMR experiments indicate that these isomeric complexes are slowly interconverting intramolecularly at 173 K. The order of the energetically preferred site of coordination is methylene (C2) approximately central methylene (C3) > methyl (C1) but with a spread of <0.2 kcal mol-1. Isotopic perturbation of resonance (IPR) experiments, conducted on several isotopomers of (i-PrCp)Re(CO)2(1-pentane), showed a large shielding of the 1H NMR chemical shift of the proton in a bound CHD2 moiety (delta -3.62) and CH2D (delta -2.64) compared with that of a bound CH3 moiety (delta -1.99). Likewise, the value of 1JCH for the coordinated methyl group of isotopomers of (i-PrCp)Re(CO)2(1-pentane) reduces in the order CH3 > CH2D > CHD2. This suggests that the alkane coordinates in an eta2-C,H fashion with a rapid exchange of bound hydrogen or deuterium within a methyl or methylene group, and that binding of a hydrogen atom is preferred over a deuterium by an amount of 0.23 +/- 0.03 kcal mol-1.  相似文献   

13.
To exploit efficient adsorbents for removing middle molecular peptides containing DFLAE (DE5,a typical peptide sequence accumulated in uremic serum) sequence by hemoperfusion,we designed and synthesized three affinity adsorbents (C1-Zn2+,C2-Zn2+ and C3-Zn2+) that could have high affinity to DE5.Subsequently,we evaluated the corresponding adsorption ability of each adsorbent by static adsorption experiments and isothermal titration calorimetry (ITC).The results showed that C1-Zn2+ had the best adsorption abi...  相似文献   

14.
The 1H and 13C NMR spectra of methyl-8-(2-furyl)-5-methyl-1,3-dioxo-3,3a,4,6,8,9,9a,9b-octahydrofuro[3,4-f]isoquinoline-7(1H)-carboxylate (1) and trimethyl 8-methyl-3-phenyl-3,4,4a,7-tetrahydro-2,5,6(1H)-isoquinolinetricarboxylate (2) at room temperature displayed doubling of the majority of signals, suggesting the presence of two rotational conformers (rotamers) in a ratio approximately 1:1.2 (in a mixture of CDCl3 and C6D6), approximately 1:1 (in CD2Cl2) and approximately 1:1.4 (in C6D6). On the basis of the temperature-dependent 1H NMR spectra of 1 and 2, the barrier to interconversion of the rotamers was calculated to be approximately 16 kcal mol(-1). The average chemical shifts and spin-spin coupling constants were analyzed for the resolution-enhanced 300 MHz 1H NMR spectrum of 1 at 333 K in CDCl3 solution. From analysis of the spin-spin coupling constants, it is proposed that the nitrogen-containing ring is in a chair conformation with C-2-H equatorial. Low- and room-temperature NOESY experiments in conjunction with theoretical ab initio calculations supported the hypothesis that the two rotamers interchange via rotation about the C-N bond. Spectral assignments of all proton and carbon resonances were made on the basis of one- and two-dimensional NMR experiments (DEPT, DQCOSY, NOESY, HETCOR and gHMBC).  相似文献   

15.
Thermotropic liquid crystalline compounds are of considerable importance due to their potential applications as advanced functional materials. A mesogen consisting of a terminal dimethylamino group, which can act as a charge-transfer donor, is particularly valuable for its light emission and nonlinear optical properties. In this study, we report the solid-state NMR investigation of the nematic behavior of one such novel mesogen (4-(dodecyloxy)benzoic acid 4-[((4-(dimethylamino)phenyl)imino)methyl]phenyl ester). Static and MAS experiments were performed on nematic and crystalline phases of the compound to measure (13)C chemical shift, (13)C-(1)H dipolar coupling, and (1)H chemical shift values. 2D chemical shift correlation of (1)H and (13)C nuclei confirmed the (13)C chemical shift values determined from 1D CPMAS experiments. The appearance of more peaks in both CPMAS and (13)C-(1)H HETCOR spectra of a crystalline solid suggests the heterogeneous orientations of phenyl rings of the mesogenic core. Variable-temperature experiments infer the motional averaging of these orientations before melting. The (1)H-(13)C dipolar coupling values, measured by 2D PITANSEMA experiments, were used to determine the orientational order of the mesogenic core at various temperatures. The influence of the linking unit and terminal substituents on the order parameter values of the mesogenic core is discussed.  相似文献   

16.
The biosynthetic origins of amphidinolide W (1) were investigated on the basis of (13)C-NMR data of 13C-enriched samples obtained by feeding experiments with [1-13C], [2-13C], and [1,2-13C2] sodium acetate in cultures of a strain Y-42 of the dinoflagellate Amphidinium sp. These incorporation patterns suggested that 1 was generated from a hexaketide chain, two acetate units, four isolated C1 units from C-2 of acetates, and four branched C1 units from C-2 of acetates. The acetate-incorporation patterns for C-1-C-2-(C-21) and C-8-C-18-(C-23, C-24) of 1 corresponded well to those for C-1-C-2-(C-27) and C-5-C-15-(C-28, C-29) of amphidinolide H (2) isolated from this strain.  相似文献   

17.
NMR studies of paramagnetic proteins are hampered by the rapid relaxation of nuclei near the paramagnetic center, which prevents the application of conventional methods to investigations of the most interesting regions of such molecules. This problem is particularly acute in systems with slow electronic relaxation rates. We present a strategy that can be used with a protein with slow electronic relaxation to identify and assign resonances from nuclei near the paramagnetic center. Oxidized human [2Fe-2S] ferredoxin (adrenodoxin) was used to test the approach. The strategy involves six steps: (1) NMR signals from (1)H, (13)C, and (15)N nuclei unaffected or minimally affected by paramagnetic effects are assigned by standard multinuclear two- and three-dimensional (2D and 3D) spectroscopic methods with protein samples labeled uniformly with (13)C and (15)N. (2) The very broad, hyperfine-shifted signals from carbons in the residues that ligate the metal center are classified by amino acid and atom type by selective (13)C labeling and one-dimensional (1D) (13)C NMR spectroscopy. (3) Spin systems involving carbons near the paramagnetic center that are broadened but not hyperfine-shifted are elucidated by (13)C[(13)C] constant time correlation spectroscopy (CT-COSY). (4) Signals from amide nitrogens affected by the paramagnetic center are assigned to amino acid type by selective (15)N labeling and 1D (15)N NMR spectroscopy. (5) Sequence-specific assignments of these carbon and nitrogen signals are determined by 1D (13)C[(15)N] difference decoupling experiments. (6) Signals from (1)H nuclei in these spin systems are assigned by paramagnetic-optimized 2D and 3D (1)H[(13)C] experiments. For oxidized human ferredoxin, this strategy led to assignments (to amino acid and atom type) for 88% of the carbons in the [2Fe-2S] cluster-binding loops (residues 43-58 and 89-94). These included complete carbon spin-system assignments for eight of the 22 residues and partial assignments for each of the others. Sequence-specific assignments were determined for the backbone (15)N signals from nine of the 22 residues and ambiguous assignments for five of the others.  相似文献   

18.
Pulse radiolysis experiments were performed on hydrogenated, alkaline water at high temperatures and pressures to obtain rate constants for the reaction of hydrated electrons with hydrogen atoms (H* + e-(aq) --> H(2) + OH-, reaction 1) and the bimolecular reaction of two hydrated electrons (e-(aq) + e-(aq) --> H(2) + 2 OH-, reaction 2). Values for the reaction 1 rate constant, k(1), were obtained from 100 - 325 degrees C, and those for the reaction 2 rate constant, k(2), were obtained from 100 - 250 degrees C, both in increments of 25 degrees C. Both k(1) and k(2) show non-Arrhenius behavior over the entire temperature range studied. k(1) shows a rapid increase with increasing temperature, where k(1) = 9.3 x 10(10) M(-1) s(-1) at 100 degrees C and 1.2 x 10(12) M(-1) s(-1) at 325 degrees C. This behavior is interpreted in terms of a long-range electron-transfer model, and we conclude that e-aq diffusion has a very high activation energy above 150 degrees C. The behavior of k(2) is similar to that previously reported, reaching a maximum value of 5.9 x 10(10) M(-1) s(-1) at 150 degrees C in the presence of 1.5 x 10(-3) m hydroxide. At higher temperatures, the value of k(2) decreases rapidly and above 250 degrees C is too small to measure reliably. We suggest that reaction 2 is a two-step reaction, where the first step is a proton transfer stimulated by the proximity of two hydrated electrons, followed immediately by reaction 1.  相似文献   

19.
Three labdane diterpenoids were isolated from an acetone extract of Plectranthus ornatus. Their structures, closely related to that of forskolin, were determined by NMR studies. Unambiguous and complete assignments of the 1H and 13C NMR chemical shifts for these substances are presented. The assignments are based on 2D shift-correlated [1H, 1H-COSY, 1H, 13C-gHSQC-1J (C,H), 1H, 13C-gHMBC-(n)J (C,H) (n = 2 and 3)] and NOE experiments.  相似文献   

20.
Three isomers of C70H10 were prepared by Zn(Cu) reduction of C70. Three chromatographic bands were identified as C70H10 species by MALDI-FT mass spectrometry, and these compounds were isolated by repeated HPLC treatments. The major isomer (2) was characterized by 1H and 13C NMR, while the minor isomers 3-4 were isolated in such small quantities that only 1H NMR analysis was possible. 1H-coupled and 1H-decoupled 13C NMR of 2 established a 7,8,19,26,33,37,45,49,53,63-substitution pattern. This assignment was confirmed by HMBC and DFQ-COSY experiments. This structure is completely reasonable, as we found that 2 results exclusively from reduction of the 7,19,23,27,33,37,44,53-C70H8 that is formed in the course of the Zn(Cu) reduction of C70.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号