首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
研究了在MBE系统中,GaAs(001)表面的氮化过程。GaAs(001)表面直接和间接地暴露在等离子体激发的N2气流下。两种氮化过程显示了完全不同的表面氮化结果。在打开N2发生器挡板的情况下,氮化导致GaAs(001)表面损伤,并且形成多晶结构。当增加N2气压时,损伤变得更严重。但是,在关闭N2发生器挡板的情况下,在500℃下,经过氮化将观察到(3×3)再构的RHEED花样,表面仍保持原子级的平整度。上述结果表明,不开N2发生器挡板,低温(500℃下)氮化将在GaN外延生长之前形成平整的薄层c-GaN。  相似文献   

2.
The magnetic properties of disordered layered structures grown on surface-reconstructed substrates are studied with respect to percolation and random fields phenomena. Both the layered site-dilution and fluctuating magnetic field are considered in the frame of the Ising model to describe the structural disorder in a deposited layer. The results of effective field calculations superior to the standard molecular field approximation are qualitatively comparable with the experimental data previously obtained for Fe films deposited on GaAs(001) (4×2)-reconstructed surface.  相似文献   

3.
徐敏  朱兴国  张明  董国胜  金晓峰 《物理学报》1996,45(7):1178-1184
利用x射线光电子能谱的深度剖面技术,对不同衬底温度下分子束外延生长的Mn薄膜及其与GaAs(001)衬底间的界面进行了元素组分和化学结合状态随深度变化的研究。实验发现衬底温度等于400K时制备的fcc-Mn/GaAs(001)体系中,fcc-Mn层与GaAs衬底之间存在一层较厚的Mn-Ga-As的缓冲层;衬底温度等于300K(室温)时制备的a-Mn/GaAs(001)体系中也存在类似的缓冲层,但它的厚度与fcc-Mn的情形相比要小得多;而当衬底温度等于450K时制备的体系在GaAs衬底之上全部是Mn-Ga  相似文献   

4.
The full-potential linearized augmented-plane-wave method is used to investigate the electronic structure of several Co- and Mn-based ferromagnetic Heusler alloys. It is shown that calculated lattice constants and spin magnetic moments are in good agreement with experimental values. Electronic structure of Ni2MnGa(001) surface as well as Ni2MnGa thin film on GaAs(001) substrate is also investigated. The changes of electronic structure and magnetic properties at surface are analyzed.  相似文献   

5.
The Phase diagrams of a ferrimagnetic mixed-spin (1/2, 3/2) hexagonal Ising nanotube with Core-Shell structure are investigated using the mean field approximation. For this, we have studied the effects of the exchange interactions and crystal field on the magnetic properties of the system. The results obtained show the appearance of critical and compensation behaviors, as well as first-order phase transitions terminating at isolated end-points in the ferrimagnetic phase domain at low temperatures.  相似文献   

6.
To prepare structure-ordered GaAs(001) surfaces at low temperatures, GaAs(001) surfaces coated with native oxides were exposed in an atomic hydrogen flow in the temperature range 280–450 °C. The new Ga-enriched GaAs(001) surfaces with the (4 × 4) and (2 × 4)/c(2 × 8) reconstructions were prepared and studied by the methods of X-ray photoelectron spectroscopy, low-energy electron diffraction, and high-resolution characteristic electron energy loss spectroscopy. For the GaAs(001)-(2 × 4) surface, the structure of the Ga-stabilized surface has been proposed and ab initio computed within the (2 × 4) Ga-trimer unit cell model.  相似文献   

7.
Scanning tunneling microscopy and reflection high-energy electron diffraction under ultrahigh vacuum conditions were used to make an in situ study of atomic structures at the surface of an InAs/GaAs heterostructure grown by molecular-beam epitaxy. It was observed that the deposition of approximately 0.3 ML of indium on an arsenic-enriched GaAs(001)-2 × 4 surface leads to the formation of the 4 × 2 phase while the deposition of 0.6 ML indium leads to the appearance of a new 6 × 2 reconstruction. It is shown that layer-by-layer two-dimensional epitaxial growth of InAs on GaAs(001) as far as 13 monolayers can only be achieved if the growth front reproduces the 4 × 2 or 6 × 2 symmetry of the substrate and models of 4 × 2 and 6 × 2 reconstructions are proposed. Atomic-resolution images of faceted planes on the surface of three-dimensional islands in an InAs/GaAs(001) system were obtained for the first time and structural models of these were developed.  相似文献   

8.
Epitaxially grown GaAs(001), (111) and (1?1?1?) surfaces and their behaviour on Cs adsorption are studied by LEED, AES and photoemission. Upon heat treatment the clean GaAs(001) surface shows all the structures of the As-stabilized to the Ga-stabilized surface. By careful annealing it is also possible to obtain the As-stabilized surface from the Ga-stabilized surface, which must be due to the diffusion of As from the bulk to the surface. The As-stabilized surface can be recovered from the Ga-stabilized surface by treating the surface at 400°C in an AsH3 atmosphere. The Cs coverage of all these surfaces is linear with the dosage and shows a sharp breakpoint at 5.3 × 1014 atoms cm?2. The photoemission reaches a maximum precisely at the dosage of this break point for the GaAs(001) and GaAs(1?1?1?) surface, whereas for the GaAs(111) surface the maximum in the photoemission is reached at a higher dosage of 6.5 × 1014 atoms cm?2. The maximum photoemission from all surfaces is in the order of 50μA Im?1 for white light (T = 2850 K). LEED measurements show that Cs adsorbs as an amorphous layer on these surfaces at room temperature. Heat treatment of the Cs-activated GaAs (001) surface shows a stability region of 4.7 × 1014 atoms cm?2 at 260dgC and one of 2.7 × 1014 atoms cm?2 at 340°C without any ordering of the Cs atoms. Heat treatment of the Cs-activated GaAs(111) crystal shows a gradual desorption of Cs up to a coverage of 1 × 1014 atoms cm?2, which is stable at 360°C and where LEED shows the formation of the GaAs(111) (√7 × √7)Cs structure. Heat treatment of the Cs-activated GaAs(1?1?1?) crystal shows a stability region at 260°C with a coverage of 3.8 × 1014 atoms cm?2 with ordering of the Cs atoms in a GaAs(1?1?1?) (4 × 4)Cs structure and at 340°C a further stability region with a coverage of 1 × 1014 at cm?2 with the formation of a GaAs(1?1?1?) (√21 × √21)Cs structure. Possible models of the GaAs(1?1?1?) (4 × 4)Cs, GaAs(1?1?1?)(√21 × √21)Cs and GaAs(111) (√7 × √7)Cs structures are given.  相似文献   

9.
Experimental results on the visualization of the density of states in InAs/GaSa(001) quantum dots that were obtained by tunnel atomic-force microscopy in an ultrahigh vacuum are presented. A one-dimensional (1D) model of dissipative quantum tunneling is proposed for describing experimental current-voltage characteristics of a tunnel contact between an atomic force microscope probe and the surface of InAs/GaAs (001) quantum dots. It was found that the influence of two local modes of the wide-band matrix on the probability of 1D dissipative tunneling leads to the appearance of several randomly spaced peaks in the field dependence. It was shown that the theoretical dependence agrees qualitatively with experimental the current-voltage characteristic of the atomic force microscope tip and the surface of InAs/GaAs(001) quantum dots.  相似文献   

10.
We study a 3D crystal where each atom interacts with neighbors via elastic and magnetic interactions by Monte Carlo simulation. The distance dependence of both interactions is supposed to be the Lennard–Jones potential and the spins are of the Ising type. When the magnetic interaction strength is much smaller than the elastic one, the magnetic transition remains in the 3D Ising criticality. With larger magnetic interaction, the critical exponents get very close to those of the 3D XY universality and not far from Fisher renormalized Ising exponents. For strong magnetic interaction, we show that as the temperature increases the crystal is broken into ferromagnetic domains separated by domain walls consisting of contracted antiferromagnetic spin pairs.  相似文献   

11.
The dependences of the photoemission current and effective electron affinity on the submonolayer cesium coverage at the adsorption of Cs on a GaAs(001) surface, as well as the kinetics of the photocurrent and affinity after the termination of Cs deposition, which is caused by the relaxation of the structure of a nonequilibrium adsorption layer, have been experimentally studied. The revealed features in the dependence of the photocurrent on the Cs coverage are attributed to a nonmonotonic behavior of the surface band bending in the Cs/GaAs(001) system. It has been established that a relaxation decrease in the photocurrent in the case of coverages smaller than half a monolayer is due to the relaxation of the band bending, whereas an increase in the photocurrent at larger coverages is caused by the relaxation of the electron affinity.  相似文献   

12.
We consider the two-dimensional (2D) random Ising model on a diagonal strip of the square lattice, where the bonds take two values, J1>J2, with equal probability. Using an iterative method, based on a successive application of the star-triangle transformation, we have determined at the bulk critical temperature the correlation length along the strip xi(L) for different widths of the strip L相似文献   

13.
The compute unified device architecture (CUDA) is a programming approach for performing scientific calculations on a graphics processing unit (GPU) as a data-parallel computing device. The programming interface allows to implement algorithms using extensions to standard C language. With continuously increased number of cores in combination with a high memory bandwidth, a recent GPU offers incredible resources for general purpose computing. First, we apply this new technology to Monte Carlo simulations of the two dimensional ferromagnetic square lattice Ising model. By implementing a variant of the checkerboard algorithm, results are obtained up to 60 times faster on the GPU than on a current CPU core. An implementation of the three dimensional ferromagnetic cubic lattice Ising model on a GPU is able to generate results up to 35 times faster than on a current CPU core. As proof of concept we calculate the critical temperature of the 2D and 3D Ising model using finite size scaling techniques. Theoretical results for the 2D Ising model and previous simulation results for the 3D Ising model can be reproduced.  相似文献   

14.
The experimental and ab initio investigations of the effect of a decrease in the binding energy of surface arsenic atoms under the cesium adsorption on an As-stabilized GaAs(001)-(2 × 4) surface have been performed. The cesium-induced redistribution of the charge on the surface atoms reduces the electron density in the As-Ga bond of the upper layer of the GaAs(001) surface; thus, the As-Ga binding energy decreases and, as a result, the diffusion activation energy, as well as the arsenic atom desorption, decreases. An increase in the diffusion coefficient of surface atoms, along with the property of Cs to segregate on the surface of a growing semiconductor film, makes it possible to use cesium as a surfactant in the low-temperature growth of GaAs by molecular beam epitaxy.  相似文献   

15.
Ising or Ising-like models in random fields are good representations of a large number of impure materials. The main attempts of theoretical treatments of these models--as far as they are relevant from an experimental point of view--are reviewed. A domain argument invented by Imry and Ma shows that the long-range order is not destroyed by weak random-fields in more than D = 2 dimensions. This result is supported by considerations of the roughening of an isolated domain wall in such systems: domain walls turn out to be well defined objects for D > 2, but arbitrarily convoluted for D < 2. Different approaches for calculating the roughness exponent ζ yield ζ= (5 - D)/3 in random-field systems. The application of ζ in incommensurate-commensurate critical behaviour is discussed.

Non-classical critical behaviour occurs in random-field systems below D = 6 dimensions which is determined in general by three independent exponents. The new exponent yJ = θ= D/2 - σ corresponds to random-field renormalization or, to say it differently, to the irrelevance of the temperature at the zero-temperature fixed point, which is believed to rule the critical behaviour. The inequalities satisfied by these exponents are investigated, as well as the relations between the eigenvalue and the critical exponents and their numerical values found in the literature.

Domain wail roughening due to random fields produces also metastability and hysteresis. It is shown that when cooling a 3D system into the low-temperature phase in an applied random field, the system runs into a metastable domain state, in agreement with the experimental observation. The further approach of the system to the ordered equilibrium state is hindered by pinning which leads to domain size increasing only logarithmically in time. Domain wall roughness and pinning in random bond systems is also considered.  相似文献   

16.
The preferential attachment of Si atoms at misorientation steps on vicinal GaAs(001) surfaces has been studied by RHEED. By analysing the time evolution of the specular beam intensity and the change in surface reconstruction during Si deposition we show that a self-organized Si incorporation along the step edges takes place. The observed (3×2) structure is due to an ordered array of dimerized Si atoms with missing dimer rows. Taking into account the structure of the (3×2) unit mesh and its orientation with respect to the As-terminated or Ga-terminated steps, a characteristic minimum in the RHEED intensity recording corresponds to the number of Ga step-edge sites. Since the preferential path for Ga as well as for Si adatom diffusion is along the [110] direction, the critical terrace width for wirelike Si attachment is much larger for a misorientation toward (111)As than for a misorientation toward (111)Ga. Despite the high local impurity concentration, the Si-modified surface can be overgrown with GaAs without adverse effects on the growth front. This is promising for the fabrication of doping wires.  相似文献   

17.
Using density-functional theory we identify a new low-energy structure for GaAs(001) in an As-poor environment. The discovered geometry is qualitatively different from the usual surface-dimer based reconstructions of III-V semiconductor (001) surfaces. The stability of the new structure, which has a c(8x2) periodicity, is explained in terms of bond saturation and favorable electrostatic interactions between surface atoms. Simulated scanning tunneling microscopy images are in good agreement with experimental data, and a low-energy electron diffraction analysis supports the theoretical prediction.  相似文献   

18.
We report a transmission electron microscope study of the morphology and interfacial structure of Aluminium grown on (001) GaAs by chemical beam epitaxy (CBE). The Al grows in islands for all thicknesses deposited, and exhibits four distinct orientation relationships with respect to the substrate. One of these orientation relationships becomes dominant as growth progresses, with (011)Al parallel to (001)GaAs. Misfit dislocations can be seen in the interface between this orientation and the substrate with Burgers vector 1/4(110)GaAs, and a crystallographic analysis shows that these dislocations are associated with interfacial steps of height 1/2[001]GaAs. In (001)Al on (001)GaAs, the existence of these dislocations has in the past been regarded as evidence for the existence of a rigid-body shift of the Al in the interfacial plane. Using cross-sectional high-resolution TEM, it is shown that this shift is not present in the (011) orientation. The similarity in the microstructure and crystallography of the (001) and (011) orientations leads us to suggest that there is also no shift in (001) Al on (001)GaAs. This is in conflict with previous investigations of this system using a wide variety of techniques.  相似文献   

19.
A brief review on recent progress in the theory of electronic, structural, and vibronic properties of semiconductor surfaces is presented with particular emphasis on the empirical and selfconsistent scattering theoretical method for semiinfinite systems. The current knowledge of the Si(001) (2×1) surface is discussed in detail. The Ge(001) (2×1) surface, as well as, the clean and the Ge-covered GaAs(110) surfaces are addressed, in addition. In the discussion of the results it is shown, that the scattering theoretical method is an extremely versatile tool for calculating electronic surface properties unambiguously with high spectral resolution concerning energy, wavevector, layer-index and orbital type. Currently used approaches for calculating the total energy, Hellmann-Feynman forces and optimal structure models are summarized. Using the total energy as a starting point, the calculation of atomic force constants and surface phonon spectra is exemplified.  相似文献   

20.
We investigated the stress evolution during molecular-beam epitaxy of bilayer InAs/GaAs(001) quantum dot (QD) structures in real time and with sub-monolayer precision using an in-situ cantilever beam setup. During growth of the InAs at 470 °C a stress of 5.1 GPa develops in the wetting layer, in good agreement with the theoretical misfit stress. At a critical thickness of 1.5 monolayers the strain is relieved by the QD formation. In the case of InAs/GaAs bilayer structures, the second InAs layer grows identical to the first for GaAs spacer thicknesses exceeding ∼13 nm. For thinner spacers the critical thickness for the 2D/3D transition in the second layer decreases. The stress of the second InAs layer does not reach the value of the first, indicating that InAs QDs grow on partially strained areas due to the strain field of the previous InAs layer. PACS 68.35.-p; 68.35.Gy; 68.65.Hb; 81.07.Ta; 81.10.Aj  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号