首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Using Rindler method we derive the logarithmic correction to the entanglement entropy of a two dimensional BMS-invariant field theory (BMSFT). In particular, we present a general formula for extraction of the logarithmic corrections to both the thermal and the entanglement entropies. We also present a CFT formula related to the logarithmic correction of the BTZ inner horizon entropy which results in our formula after taking appropriate limit.  相似文献   

2.
We calculate the correction to the Bekenstein-Hawking entropy formula for five-dimensional AdS-Schwarzschild black holes due to thermodynamic fluctuations. The result is then compared with the boundary gauge theory entropy corrections via AdS/CFT correspondence.  相似文献   

3.
Specific heat experimental results in the 3x10?2 ≦ | t | ≦5.5x10?5 temperature range (t = (T?TC)TC) were fitted by means of the logarithmically corrected Landau theory of uniaxial dipolar ferroelectrics. The non-universal parameters b and tO as well as the transverse and longitudinal correlation lengths at zero temperature are determined.  相似文献   

4.
Hamiltonian systems are analyzed with a double homoclinic orbit connecting a saddle to itself. Competing centers exist. A small dissipative perturbation causes the stable and unstable manifolds of the saddle point to break apart. The stable manifolds of the saddle point are the boundaries of the basin of attraction for the competing attractors. With small dissipation, the boundaries of the basins of attraction are known to be tightly wound and spiral-like. Small changes in the initial condition can alter the equilibrium to which the solution is attracted. Near the unperturbed homoclinic orbit, the boundary of the basin of attraction consists of a large sequence of nearly homoclinic orbits surrounded by close approaches to the saddle point. The slow passage through an unperturbed homoclinic orbit (separatrix) is determined by the change in the value of the Hamiltonian from one saddle approach to the next. The probability of capture can be asymptotically approximated using this change in the Hamiltonian. The well-known leading-order change of the Hamiltonian from one saddle approach to the next is due to the effect of the perturbation on the homoclinic orbit. A logarithmic correction to this change of the Hamiltonian is shown to be due to the effect of the perturbation on the saddle point itself. It is shown that the probability of capture can be significantly altered from the well-known leading-order probability for Hamiltonian systems with double homoclinic orbits of the twisted type, an example of which is the Hamiltonian system corresponding to primary resonance. Numerical integration of the perturbed Hamiltonian system is used to verify the accuracy of the analytic formulas for the change in the Hamiltonian from one saddle approach to the next. (c) 1995 American Institute of Physics.  相似文献   

5.
6.
In this paper we consider the generalized uncertainty principle (GUP) in the tunneling formalism via Hamilton–Jacobi method to determine the quantum-corrected Hawking temperature and entropy for noncommutative BTZ black hole. In our results we obtain several types of corrections including the expected logarithmic correction to the area entropy associated with the noncommutative BTZ black holes. We also show that the area entropy product of the noncommutative BTZ black holes is dependent on mass and by analyzing the nature of the specific heat capacity we have observed that the noncommutative BTZ black hole is stable at some range of parameters.  相似文献   

7.
8.
9.
In this Letter, we first extend the Parikh–Wilczek tunneling framework to a general spherically symmetric black hole, and calculate the tunneling rate of the emission particles to the second order accuracy. Then, by assuming the emission process satisfies an underlying unitary theory, we correct the entropy of a general spherically symmetric black hole. We find that the log correction and the inverse area correction to the entropy is also suitable for a general spherically symmetric black hole.  相似文献   

10.
11.
张丽春  赵仁 《中国物理 B》2010,19(4):2217-2222
本文延拓Damour-Ruffini方法,研究Kerr-Newman-de Sitter黑洞的Hawking辐射.在保持时空中总能量,总角动量和总电荷守恒的条件下,考虑辐射粒子对时空的反作用与黑洞事件视界和宇宙视界的相互关联后,得到了黑洞辐射谱.此辐射不再是严格的纯热谱与黑洞事件视界和宇宙视界对应Bekenstein-Hawking熵变有关.研究发现其结果仍然符合幺正性原理. 同时给出了黑洞Bekenstein-Hawking熵的修正项. 使人们对黑洞热辐射的研究有了进一步的认识.  相似文献   

12.
张丽春  赵仁 《物理学报》2010,59(4):2217-2222
本文延拓Damour-Ruffini方法,研究Kerr-Newman-de Sitter黑洞的Hawking辐射.在保持时空中总能量,总角动量和总电荷守恒的条件下,考虑辐射粒子对时空的反作用与黑洞事件视界和宇宙视界的相互关联后,得到了黑洞辐射谱.此辐射不再是严格的纯热谱与黑洞事件视界和宇宙视界对应Bekenstein-Hawking熵变有关.研究发现其结果仍然符合幺正性原理.同时给出了黑洞Bekenstein-Hawking熵的修正项.使人们对黑洞热辐射的研究有了进一步的认识.  相似文献   

13.
14.
The Parikh–Wilczek tunnelling framework, which treats Hawking radiation as a tunnelling process, is investigated once more in this work. The first order correction, the log-corrected entropy-area relation, emerges naturally in the tunnelling picture if we consider the emission of a spherical shell. The second order correction to the emission rate for the Schwarzschild black hole is also calculated. At this level, the entropy of the black hole will contain three parts: the usual Bekenstein–Hawking entropy, a logarithmic term and an inverse area term. We find that the coefficient of the logarithmic term is −1. Thus, apart from a coefficient, our correction to the black hole entropy is consistent with that calculated in loop quantum gravity.  相似文献   

15.
16.
17.
18.
Logarithmic corrections to the extremal black hole entropy can be computed purely in terms of the low energy data—the spectrum of massless fields and their interaction. The demand of reproducing these corrections provides a strong constraint on any microscopic theory of quantum gravity that attempts to explain the black hole entropy. Using quantum entropy function formalism we compute logarithmic corrections to the entropy of half BPS black holes in N=2{{\mathcal N}=2} supersymmetric string theories. Our results allow us to test various proposals for the measure in the OSV formula, and we find agreement with the measure proposed by Denef and Moore if we assume their result to be valid at weak topological string coupling. Our analysis also gives the logarithmic corrections to the entropy of extremal Reissner–Nordstrom black holes in ordinary Einstein–Maxwell theory.  相似文献   

19.
We study the nonlinear logarithmic Schrödinger equation in three dimensions. We establish the existence of the solutions of general quasi-linear Schrödinger equations. Finally, we show the convergence of the logarithmic quantum mechanics to the linear regime.  相似文献   

20.
In this work, we have considered the power-law correction of entropy on the horizon. If the flat FRW Universe is filled with the n components fluid with interactions, the GSL of thermodynamics for apparent and event horizons have been investigated for equilibrium and non-equilibrium cases. If we consider a small perturbation around the de Sitter spacetime, the general conditions of the validity of GSL have been found. Also if a phantom dominated Universe has a pole-like type scale factor, the validity of GSL has also been analyzed. Further we have obtained constraints on the power-law parameter α in the phantom and quintessence dominated regimes. Finally we obtain conditions under which GSL breaks down in a cosmological background.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号